
Time-Reversal in Conway’s Life as SAT

Stuart Bain

Institute of Transport and Logistics Studies
Faculty of Economics and Business

University of Sydney, Sydney, NSW 2006, Australia
stuartb@itls.usyd.edu.au

Abstract. This paper describes a translation of the time-reversal prob-
lem in Life to propositional satisfiability. Two useful features of this
translation are: that the encoding is linear (in both variables and clauses)
with respect to the number of cells in the original problem; and, it can
be used to generate problem instances that are known a priori to be sat-
isfiable. The problem is shown to have statistically defined hard regions
where instances are on average more difficult than in other regions.

1 Introduction

Conway’s Life [1] is perhaps the most widely known of all cellular automata.
Whilst determining the successor of a Life pattern is a polynomial-time proce-
dure, determining the precursor of a pattern is significantly more challenging.

The development of SAT solvers suitable for ‘real-world’ problems benefits
from ready access to structured problem instances. As genuine instances are
often in short supply, may be cumbersome to distribute, or subject to commercial
priviledge, structured problem generators therefore serve an important function
in solver development and testing. A useful property of a candidate problem is
whether it can be used to generate instances that are known to be satisfiable in
advance. This will be shown to be easily enforceable in Life time-reversal.

The focus of this paper is that the Life time-reversal problem can be used
to generate challenging, structured, propositional satisfiability instances for use
in the development and testing of SAT solvers.

2 Problem Description

Life operates using an infinite square grid of cells, where at each time-step, each
cell is either alive or dead. The state of a cell depends exclusively on the state of
itself and its neighbours in the immediately preceding time-step. Each cell has
exactly 8 neighbours, being the surrounding cells in the horizontal, vertical and
diagonal directions. The rules in Life may be described succintly as follows: A
cell will be dead in the following time-step unless it currently has either exactly
3 live neighbours or exactly 2 live neighbours and is presently alive itself. Time-
reversal in Life can be therefore be specified as a decision problem as follows:

Does the specified pattern of cells possess at least one precursor?



3 Problem Encoding

Although Life is generally considered to operate using an infinitely large grid of
cells, it is possible to restrict the domain of the problem to a finite grid. Given
the specification of the state of the grid cells (1, 1)-(x, y) (the inner cells) at time
t1, it is possible to consider their time-reversal by considering not an infinite
grid, but only the cells (0, 0)-(x + 1, y + 1) (the outer cells). As cells in Life can
exist in only two possible states, SAT is a natural method for encoding such a
problem, since the state of each cell can be represented by a single SAT variable.

The following notation is used to specify the clauses of the SAT encoding.
∧

and
∨

are non-binary, set versions of the conjunction and disjunction operators
respectively. Sets are written in bold face. Each rule defines a propositional
formula (in conjunctive normal form), for a specified cell x and its corresponding
neighbour set n. Pi(A) is defined to be a variation of the power set axiom, which
returns all subsets of A having a cardinality of i. Overlining denotes a literal or
set of literals that is negated in the formula. All literals refer to the state of a
cell at time t0. The overall SAT formula is formed by the conjunction of clauses
from rules 1-3 for cells live at t1, and rules 4-5 for cells dead at t1.

(1) Loneliness: A cell with fewer than 2 live neighbours (at least 7 dead
neighbours) at time t0 is dead at time t1, irrespective of its own state at t0.
(2) Stagnation: A dead cell with exactly two live neighbours at time t0 will still
be dead at time t1. (3) Overcrowding : A cell with four or more live neighbours at
time t0 will be dead at time t1 irrespective of its own state at t0. (4) Preservation:
A cell that is alive at time t0 with exactly two live neighbours will remain alive
at time t1. (5) Life: A cell with exactly 3 live neighbours at time t0 will be alive
at time t1, irrespective of its prior state. Formally:

Loneliness (x,n) =
∧

c∈P7(n)

(∨
c
)

(1)

Stagnation (x,n) =
∧

c∈P2(n)

(
x ∨

∨
c ∨

∨
(n− c)

)
(2)

Overcrowding (x,n) =
∧

c∈P4(n)

(∨
c
)

(3)

Preservation (x,n) =
∧

c∈P2(n)

(
x ∨

∨
c ∨

∨
(n− c)

)
(4)

Life (x,n) =
∧

c∈P3(n)

(∨
c ∨

∨
(n− c)

)
(5)

4 Instance Generation and Evaluation

Two methods of generating random instances of the Life time-reversal problem
were examined, both of which generate a mix of satisfiable and unsatisfiable
instances.



The first method involves choosing which cells are live at time t1 entirely at
random. The second method distributes live cells in a balanced way, by making
cells live in a regular order and then randomly permuting the rows and columns
of the grid to create different instances. This method has also been used to create
balanced instances of the quasigroup with holes problem [2].

Problem sizes (inner grid dimensions) ranged from 15 through 25, using a
square grid so that x = y. The percentage of live cells was varied from 4%
to 96% in steps of 4%. 100 different instances were created for each parameter
combination. Run-times are for a Sun UltraSPARC-III 900MHz computer.

4.1 Basic results

The difficulty of the SAT encoding of both the random and balanced instances
was empirically examined using two different complete solvers: MiniSAT version
1.14.1 [3] and zChaff version 2004.5.13 [4]. The run-time profiles for each solver
were similar (so only the results for the more efficient MiniSAT are presented).

Plots of the mean run-time on instances of both types are shown in Fig. 1. The
median run-times do not differ substantially from the mean times so are omitted
here, but will be presented for the balanced case in the following section.

These figures show that there are two distinct ‘hard’ regions, located respec-
tively at 48% and 88% live cells. Whilst obvious in the larger instances, smaller
instances do not tend to exhibit these peaks; their peak occurs in the valley be-
tween the two peaks instead. Also of interest is that the location of these regions
does not depend greatly on the method of assignment of live cells (balanced or
random).

0 20 40 60 80 100
0

20

40

60

80

M
ea

n 
ru

n−
tim

e 
(s

ec
on

ds
)

0 20 40 60 80 100
0

20

40

60

80

0 20 40 60 80 100
0

20

40

60

80

100

Percent Live Cells

%
 u

ns
at

is
fia

bl
e 

in
st

an
ce

s

0 20 40 60 80 100
0

20

40

60

80

100

Percent Live Cells

Fig. 1. Average time required to determine the satisfiability of problem instances and
percent unsatisfiable instances, by number of live cells.



What explanation can be given for the observed problem difficulty? In other
SAT problems, hardness peaks are often associated with a phase transition be-
tween satisfiable and unsatisfiable instances [5]. The percentage of unsatisfiable
instances by percent live cells is also shown in Fig. 1. These figure shows that
the hardness peaks in the problem do coincide with the transition from mostly-
SAT to mostly-UNSAT instances and vice versa. The observed hardness peaks
occur approximately at the points where only 50% of generated instances are
satisfiable, analogous to results for other SAT-encoded problems [2].

4.2 Known satisfiable instances

It is possible to generate instances of this problem that are guaranteed to be
satisfiable in advance. This is achieved by generating an (x− 2)-by-(y − 2) pat-
tern (as above) and applying the rules of Life in the forward-time direction to
determine the state of the x-by-y grid at time t1. Unlike the instances generated
previously, in this case outer cells and any cells external to these are explicitly
declared to be off at time t0 (achieved by adding one literal to represent all
external cells and a single unit clause with this literal present negatively).

Instances were generated using the balanced method. It can be seen from
Fig. 2 that the previous right-most hardness peak coincident with the UNSAT-
SAT transition has been eliminated. But the peak on the left remains, albeit
shifted to now exhibit greatest difficulty when between 36% and 40% of cells are
originally live, depending on whether mean or median times are considered.

Of particular interest is that the difficulty of the known SAT instances is com-
parable to that of the mixed SAT/UNSAT instances (at each respective peak).

0 20 40 60 80 100
0

10

20

30

40

SAT − Original percentage of live cells

M
ea

n 
ru

n−
tim

e 
(s

ec
on

ds
)

0 20 40 60 80 100
0

10

20

30

40

SAT − Original percentage of live cells

M
ed

ia
n 

ru
n−

tim
e 

(s
ec

on
ds

)

0 20 40 60 80 100
0

10

20

30

40

SAT/UNSAT − Percentage of live cells

M
ea

n 
ru

n−
tim

e 
(s

ec
on

ds
)

0 20 40 60 80 100
0

10

20

30

40

SAT/UNSAT − Percentage of live cells

M
ed

ia
n 

ru
n−

tim
e 

(s
ec

on
ds

)

Fig. 2. Comparison of mean/median run-times on SAT vs SAT/UNSAT instances



It is reasonable to conclude then, that enforcing satisfiability in this problem
does not lead to trivially solved instances as occurs with some problems [6].

The run-time distributions for the hardest two parameter settings (those
with 36% and 40% of cells originally live) were compared against those of all
other settings using the Wilcoxon Rank-Sum test. With the exception of their
comparison to each other, the Wilcoxon test confirmed that these two run-time
distributions were harder than all other distributions: with strong significance
(α < 0.01) in all cases for the 36% distribution; and similarly for the 40% distri-
bution but with the single exception of the comparison to the 32% distribution
(which was simply significant, α < 0.05).

5 Conclusions and Future Work

This paper has presented a method for translating the time-reversal problem of
Life into SAT. This is a useful structured problem to consider for satisfiability
testing, particularly as it can be used to generate known satisfiable instances.

Distributions with both SAT/UNSAT and only SAT instances were exam-
ined. In the former case, the most difficult instances were found to be coincident
with the phase-transitions from mostly-SAT to mostly-UNSAT instances.

In the latter case however, a hard region still occurs, unrelated to any phase
transition phenomena. Perhaps the most pressing questions then are the underly-
ing reasons for the greater difficulty of instances in the hard region of the known
SAT instances. Having discounted a phase-transition, a study of backbone size
and number of solutions may offer some insight as to their greater difficulty.

The non-parametric Wilicoxon Rank-Sum test was used to confirm that the
empirically identified hard distributions were on average more difficult than com-
peting distributions with strong statistical certainty. Since this problem has been
shown to have defined hard regions, and the locations of these regions identified,
it presents an ideal problem for the testing of SAT solvers.

An extended version of this paper and the instance generator are available from
the author’s homepage at http://stuart.multics.org

References

1. Gardner, M.: Mathematical Games: The fantastic combinations of John Conway’s
new solitaire game “Life”. Scientific American 223 (1970) 120–123

2. Kautz, H., Ruan, Y., Achlioptas, D., Gomes, C., Selman, B., Stickel, M.: Balance
and filtering in structured satisfiable problems. In: IJCAI’01. (2001) 351–358

3. Eén, N., Sörensen, N.: An extensible SAT solver. In: SAT 2003. (2003) 502–518
4. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering

an efficient SAT solver. In: Proc. of the 38th Design Automation Conference. (2001)
5. Achlioptas, D., Naor, A., Y.Peres: Rigorous location of phase transitions in hard

optimization problems. Nature 435 (2005) 759–764
6. Achlioptas, D., Gomes, C.P., Kautz, H.A., Selman, B.: Generating satisfiable prob-

lem instances. In: AAAI’00. (2000) 256–261


