
Evolving Algorithms for Constraint Satisfaction
Stuart Bain and John Thornton and Abdul Sattar

Institute for Integrated and Intelligent Systems
Griffith University

PMB 50, Gold Coast Mail Centre, 9726, Australia
Email: [s.bain, j.thornton, a.sattar]@griffith.edu.au

Abstract— This paper proposes a framework for automati-
cally evolving constraint satisfaction algorithms using genetic
programming. The aim is to overcome the difficulties associ-
ated with matching algorithms to specific constraint satisfaction
problems. A representation is introduced that is suitable for
genetic programming and that can handle both complete and
local search heuristics. In addition, the representation is shown to
have considerably more flexibility than existing alternatives, being
able to discover entirely new heuristics and to exploit synergies
between heuristics. In a preliminary empirical study, it is shown
that the new framework is capable of evolving algorithms for
solving the well-studied problem of boolean satisfiability testing.

I. INTRODUCTION

The notion that a universally effective problem solver may
still exist, and is simply waiting to be found, is slowly being
abandoned in the light of a growing body of work reporting on
the narrow applicability of individual heuristics. A heuristic’s
success on one particular problem is not an a priori guarantee
of its effectiveness on another, structurally dissimilar problem.
In fact, the “no free lunch” theorems [1] hold that quite
the opposite is true, asserting that a heuristic algorithm’s
performance, averaged over the set of all possible problems,
is identical to that of any other algorithm. Hence, superior
performance on a particular class of problem is necessarily
balanced by inferior performance on the set of all remaining
problems.

Adaptive problem solving aims to overcome these difficul-
ties by employing more than one individual heuristic, or by
providing the facility to modify heuristics to suit the current
problem. More generally, an adaptive system can be consid-
ered to embody a space of possible heuristics. As the search
progresses, information gathered about the structure of the
problem or the efficacy of the various heuristics, is used by the
system to explore the space of possible heuristics and locate
the one most applicable to the current problem. In addition
to overcoming the limitations imposed by a single heuristic,
an adaptive system removes the need for the developer to
determine the most appropriate heuristic beforehand.

Despite this, much of the research into adaptive algorithms
has concerned the identification of which heuristics, from a set
of completely specified heuristics, are best suited for solving
particular problems. Heuristics in these methods are declared
a priori, based on the developer’s knowledge of appropriate
heuristics for the problem domain. This is disingenuous, in that
it assumes knowledge of the most appropriate heuristics for a
given problem, when the very motivation for using adaptive

algorithms is the difficulty associated with matching heuristics
to problems.

Existing work on adaptive algorithms will be discussed in
section II, before a new representation that overcomes these
difficulties is presented in section III. An example of its use,
and how it has been extended with compound heuristics, will
be presented in sections IV and V respectively. How the
search space of algorithms may be explored and expanded is
described in sections VI and VII, followed by the presentation
of experimental results in section VIII.

II. BACKGROUND

One paradigm that has proven particularly popular for
representing finite domain problems is that of the constraint
satisfaction problem (CSP). All CSPs are characterised by the
inclusion of a finite set of variables; a set of domain values for
each variable; and a set of constraints that are only satisfied by
assigning particular domain values to the problem’s variables.
Whilst a multitude of algorithms have been proposed to locate
solutions to such problems, this paper focuses on methods
that can adapt to the particular problem they are solving. A
number of previously proposed adaptive methods will first be
discussed.

The MULTI-TAC system proposed by Minton [2], [3] is
designed to synthesise heuristics for solving CSPs. Such
heuristics are extrapolated from “meta-level theories” i.e. basic
theories that describe properties of a partial solution to a
CSP. The theories explicated for use with MULTI-TAC lead
primarily to variable and value ordering heuristics for complete
(backtracking) search. Exploration is by way of a beam search,
designed to control the number of candidate heuristics that
will be examined. Unlike some of the other adaptive methods,
MULTI-TAC is able to learn new heuristics from base theories.

The use of chains of low-level heuristics to adapt to individ-
ual problems has also been proposed. Two such systems are the
Adaptive Constraint Satisfaction (ACS) system suggested by
Borrett et al. [4] and the hyper-heuristic GA system proposed
by Han and Kendall in [5]. ACS relies on a pre-specified
chain of algorithms and a supervising “monitor” function
that recognises when the current heuristic is not performing
well and directs the search to advance to the next heuristic
in the chain. In contrast to a pre-specfied chain, the hyper-
heuristic system evolves a chain of heuristics appropriate for
a particular problem using a genetic algorithm. Although [4]
exclusively considered complete search methods, their work



would preclude the use of chains of local search algorithms
instead. The same can be said vice versa for [5] which
considered chains of local search heuristics.

Gratch and Chien [6] propose an adaptive search system
specifically for scheduling satellite communications, although
the underlying architecture could address a range of similar
problems. An algorithm is divided into four seperate levels,
each in need of a heuristic assignment. All possibilities for a
particular level are searched before a commitment is made to
a particular one, and the search proceeds to the next level. In
this way, the space of possible methods is pruned and remains
computationally feasible. Unfortunately such a method is
unable to recognise synergies that may occur between the
various levels.

The premise of Nayerek’s work [7] is that a heuristic’s past
performance is indicative of its future performance within the
scope of the same sub-problem. Each constraint is considered
a sub-problem, and has a cost function and a set of associ-
ated heuristics. A utility value for each heuristic records its
past success in improving its constraint’s cost function, and
provides an expectation of its future usefulness. Heuristics are
in no way modified by the system, and their association to
a problem’s constraints must be determined a priori by the
developer.

In [8], Epstein et al. proposed the Adaptive Constraint
Engine (ACE) as a system for learning search order heuristics.
ACE is able to learn the appropriate importance of individual
heuristics (termed “advisors”) for particular problems. The
weighted sum of advisor output determines the evaluation
order of variables and values. ACE is only applicable for use
with complete search, as a trace of the expanded search tree
is necessary to update the advisor weights.

With the exception of MULTI-TAC, the primary limitation
of these methods is their inability to discover new heuris-
tics. Although ACE is able to multiplicatively combine two
advisors to create a new one, it is primarily, like Nayarek’s
work, only learning which heuristics are best suited to par-
ticular problems. Neither [6], which learns a problem-specific
conjunctive combination of heuristics, nor [5], which learns
a problem-specific ordering of heuristics, actually learns new
heuristics.

A secondary limitation of the methods discussed (specif-
ically those of [3], [6]) is their inability to exploit syner-
gies. Heuristics that perform well in conjunction with other
methods, but poorly individually, will not be identified by
the two methods. A discussion of synergies is not applicable
to the remaining methods, except for [5] where the use of
a genetic algorithm permits the identification of synergies.
Other factors that should be mentioned include the ability
of the methods to handle both complete and local search;
the maximum complexity of the heuristics they permit to
be learned; and whether the methods are able to learn from
failure. How the new representation and genetic programming
will address these points will be discussed in the following
sections.

III. A NEW REPRESENTATION FOR CSP ALGORITHMS

A constraint satisfaction algorithm can be viewed as an
iterative procedure that repeatedly assigns domain values to
variables, terminating when all constraints are satisfied, the
problem is proven unsolvable, or the available computational
resources have been exhausted. How the values and the
variables are chosen depends on the heuristics of the particular
algorithm. Such a heuristic algorithm can be defined in the
new representation by the specification of three functions: the
move contention function; the move preference function; and
the move selection function.

ALGORITHM
�

CONTEND some-moves-to-consider;
PREFER moves-according-to-some-metric;
SELECT one-move-to-enact�

Fig. 1. Representation of a constraint algorithm

Each move is passed in sequence to the move contention
function to determine which moves (assignments of values to
variables) are to be further considered by the search algorithm.
Examples of this type of function are: “all moves that involve
unsatisfied constraints”; “all moves that haven’t been taken
recently”; or “all moves involving unassigned variables”. The
resultant list of moves is then passed one move at a time to the
move preference function, which assigns a numeric preference
value to each move. Examples of preference functions include:
“the count of unsatisfied constraints”; “the time since this
move was last taken”; or “the maximally constrained variable”.
Once preference values have been assigned, the move selection
function uses the preference values to choose one move from
the contention list to enact. Some commonly used selection
functions are “a random selection from the best moves” and
“a random selection from improving moves”.

The example functions mentioned have been drawn from
both the local and complete search domains to demonstrate
that that the proposed representation is applicable to both types
of search. Both backtracking and local search algorithms for
constraint satisfaction can be viewed as iteratively assigning
values to variables. The traditional difference between the two
methods is that backtracking search instantiates variables only
up to the point where constraints are violated, whereas all vari-
ables are instantiated in local search regardless of constraint
violations. As backtracking maintains a complete record of its
search, it is capable of exploring the entire search space. Local
search routines rarely record so much information, selecting a
promising new solution from the neighbourhood of the current
solution on the basis of a heuristic function.

Despite these differences, at every iteration both types of
search make two decisions: “What variable will be instantiated
next?” and “Which value will be assigned to it?”. Although
the representation is capable of handling complete search
algorithms, overcoming one of the limitations of some existing



work, the rest of the paper will concentrate on its use for local
search methods.

IV. THE REPRESENTATION IN OPERATION

A demonstration of the representation in operation will
be presented using the well-known GSAT algorithm [9] and
reference to a small graph colouring problem. GSAT was
selected because it is widely known, relatively simple, and was
instrumental in the development of local search for constraint
satisfaction. Figure 2 presents the GSAT algorithm in the new
representation and the graph colouring problem is shown in
Figure 3.

GSAT
�

CONTEND all-moves-for-unsatisfied-constraints;
PREFER moves-on-total-constraint-violations;
SELECT randomly-from-minimal-cost-moves�

Fig. 2. Representation of the GSAT algorithm

The aim of the problem is to find an assignment of colours
to each of the three countries, such that no countries sharing
a border are coloured the same. For this problem, there are
3 variables (the three countries); 3 domain values for each
variable (the colours black, gray and white); and 3 constraints
(for the three contiguous borders). Local search is being
considered, so the problem begins with a random instantiation
of values to variables that has resulted in one constraint
violation, as shown in Figure 3.

A. Step 1 - Move Contention
Move contention determines which moves are currently

available for the search algorithm. All moves are considered,
being passed in sequence to the GSAT heuristic that returns
True if (and only if) the move involves a variable in an
unsatisfied constraint. In this case, this heuristic returns True
for the variables � and � . The possible moves are:

1) �������
	���

2) �������������
3) ��������	���

4) �������������
These potential moves are now passed to the move prefer-

ence stage of the algorithm.

Fig. 3. A graph colouring problem

B. Step 2 - Move Preference

Move preference involves assigning to each of the contend-
ing moves a numeric value representing how well that move
satisfies a particular metric. GSAT ranks moves according to
the total number of constraints that would be unsatisfied if
each move was taken. The number of constraints that would
be unsatisfied for each of the four contending moves is as
follows:

1) ���������������! 
2) �"�����������#�$ 
3) �����%��	���
&��'
4) �"�����
	���
(�)'
The moves and their preference values are now passed to

the final stage of the algorithm.

C. Step 3 - Move Selection

Move selection uses the results of the preference stage to
select a move to enact. GSAT makes a random selection from
amongst the (two) best moves, which in this case, both lead
to a satisfying solution. After enacting this move, the problem
is solved and the algorithm terminates.

V. COMPOUND HEURISTICS

A number of published local search algorithms can be posed
in the representation as it has been described so far. A selection
of these algorithms are listed in Table I. Some algorithms
however, are not able to be posed in such simple terms. For this
reason, three compound heuristics are presented: probabilistic
choice; possibilistic choice; and comparative choice.

A. Probabilistic choice

Probabilistic choice is employed by the WSAT heuristic
[10]. Instead of applying a single strategy, probabilistic choice
allows two seperate algorithms to be used. One of the two
algorithms is selected probabilistically for use each turn. This
introduces an element of randomness that may assist a search
in escaping a local minimum.

B. Possibilistic choice

Possibilistic choice occurs in a number of algorithms (such
as DLM [11]), that repeatedly use a single algorithm until it is
no longer able to be applied. As an example, the search may
operate in a greedy manner until no improving moves exist.
When an improving move is no longer possible, the algorithm
may begin making random or cost neutral moves that would
not normally be accepted. Possibilistic choice requires three
algorithms as arguments, only if the first algorithm is possible
is the second algorithm enacted. Otherwise the third algorithm
will be used. There is no restriction that all algorithms must
be distinct.



C. Comparative choice

Comparative choice has been used by the Novelty [12]
family of algorithms, and references four different algorithms
as arguments. The moves that would be taken by the first
two specified algorithms are compared, in the case of Nov-
elty, these are the “best” move and the most “recent” move
algorithms. If both algorithms would make the same move,
the third algorithm is enacted, otherwise the fourth algorithm
would be used.

In Novelty, the CONTEND heuristic requires the selection
of a random constraint (see Table I), which recurs throughout
the algorithm. This creates an ambiguity: either each instance
of CONTEND randomly picks its own constraint or a single
randomly selected constraint applies to all instances (for
Novelty, the same constraint does apply to all instances). This
ambiguity could be removed by enforcing the rule that all
duplications of a given heuristic (within the same algorithm)
become exact copies of a single underlying heuristic. Hence,
if a random choice is made, it will be the same for all
versions. Alternatively, the expression trees could be treated as
directed acyclic graphs, so that only particular duplications are
equivalent1. An algorithm would not be restricted to a single
instance of each heuristic, allowing for cases where different
evaluations might be desired. Determining which of the two
methods is most appropriate is an ongoing area of research.

VI. ADAPTING ALGORITHMS

The aim in developing a new representation has been to
provide a framework for the adaptation and discovery of new
algorithms. One of the underlying premises of this work is
that a representation capable of expressing the diverse range of
current algorithms, without dictating their explicit definition,
implies a suitable level of complexity for new algorithms.
Preceding sections have demonstrated that the representation is
capable of handling the level of complexity present in existing
algorithms.

One method that has been proposed for discovering solu-
tions when the form of the solution is not pre-determined (or is
unknown) is genetic programming [13]. Genetic programming
uses a dynamic, tree-based data structure to overcome the
limitation of the linear (and often fixed length) data structures
used by genetic algorithms. As a brief example of genetic
programming, consider regressing some data to a linear func-
tion, *,+.-/� . Providing that the data is from a linear function,
regression requires the determination of values for * and � .
Using a genetic algorithm, * and � would entirely comprise
the chromosome, and we are limited to discovering equations
of a linear form. Alternatively, a genetic program for the same
purpose would allow the same two constants * and � but
possibly more, the argument + and the operators -1032 to
form part of the solution. These are combined by genetic
programming into an expression tree representing the function
to be learned. Where the genetic algorithm is restricted to

1The authors would like to acknowledge the input of Peter Stuckey,
University of Melbourne, for this suggestion.

GSAT 4 CONTEND all-moves-for-unsatisfied-constraints;
PREFER moves-on-total-constraint-violations;
SELECT randomly-from-minimal-cost-moves 5

HSAT 4 CONTEND all-moves-for-unsatisfied-constraints;
PREFER on-left-shifted-constraint-violations-+-recency;
SELECT minimal-cost-move 5

TABU 4 CONTEND all-moves-not-taken-recently;
PREFER moves-on-total-constraint-violations;
SELECT randomly-from-minimal-cost-moves 5

WEIGHT- 4 CONTEND all-moves-for-unsatisfied-constraints;
ING PREFER moves-on-weighted-constraint-violations;

SELECT randomly-from-minimal-cost-moves 5
WSAT 4 PROBABILISTIC

4 CONTEND all-moves-for-a-random-constraint;
PREFER moves-on-new-constraint-violations;
SELECT randomly-from-minimal-cost-moves 5 ;
4 CONTEND all-moves-for-a-random-constraint;
PREFER moves-on-new-constraint-violations;
SELECT randomly-from-all-contenders 5

NOVELTY 4 COMPARATIVE 4
IF 4 CONTEND all-moves-for-a-random-constraint;

PREFER moves-on-total-constraint-violations;
SELECT randomly-from-minimal-cost-moves 5

== 4 CONTEND all-moves-for-a-random-constraint;
PREFER moves-on-recency-of-move;
SELECT randomly-from-minimal-cost-moves 5 ;

THEN 4 PROBABILISTIC 4
4 CONTEND all-moves-for-a-random-constraint;
PREFER moves-on-total-constraint-violations;
SELECT randomly-from-minimal-cost-moves 5 ;
4 CONTEND all-moves-for-a-random-constraint;
PREFER moves-on-total-constraint-violations;
SELECT from-second-lowest-cost-moves 565 ;

ELSE 4 CONTEND all-moves-for-a-random-constraint;
PREFER moves-on-total-constraint-violations;
SELECT randomly-from-minimal-cost-moves 5

565
TABLE I

TABLE OF WELL-KNOWN LOCAL SEARCH HEURISTICS

learning first-order polynomials, this method has the advantage
of being able to learn a range of polynomial functions.

Adaptation of a genetic program takes place using meth-
ods analagous to those employed in a genetic algorithm
for selection, cross-over and mutation, except that the GP
variants are designed to operate on trees, rather than a string
of symbols. An example of a heuristic represented as an
expression tree is diagrammed in Figure 4. The selection
operation is very similar, as the fitness of tentative solutions
must still be evaluated to determine which solutions will beget
the next generation. Cross-over operates differently than in
the standard GA, selecting a random subtree from each of
two parent solutions and interchanging them to create two
new solutions. Finally, mutation in a genetic program creates
a new solution by replacing an existing subtree with a new,
randomly-generated one.

Genetic programming addresses the remaining limitations
identified in existing work. Synergies can be exploited, as
individuals are not removed from the population as a result of
poor performance. As individuals are selected probabilistically
to participate in cross-over, individuals that have performed
poorly on their own may still form part of a subsequent



generation. The other limitation of some existing approaches
is their inability to learn from failure. Even if an algorithm
does not locate any solutions, information about how close it
came to solutions or how much of the search space it explored
can form part of a fitness function.

Algorithms in the proposed representation are adapted by
genetic programming operations that must preserve the syn-
tactic structure of the original algorithm. This is easily ac-
complished with both the cross-over and mutation operations.
In cross-over, only similarly-typed structures from two parents
may be interchanged. All functions and terminals that compose
the three different heuristics also have associated types that
must be preserved. This is always preserved by any genetic
operation that operates on an algorithm.

The algorithms listed in Table I were described using easily
recognisable English descriptions of their heuristics. If the
genetic operators were unable to decompose heuristics any
further than these descriptions, it could still explore a bounded
space of algorithms simply by interchanging the component
heuristics. The aim of this work is to develop new heuristics
by combining individual functions and terminals in novel
ways. This requires that heuristics be broken down into their
component parts. The space of heuristics can then be expanded
by combining these functions and terminals with a number
of generic functions. The more detailed expressions behind
the English description, will now be presented for the GSAT
algorithm as an example2.

Contention in GSAT passes every move currently possible
to the “InUnsatisfied” function, which returns boolean True if
the move will be in contention or False if the move is not to
be considered further. This function can be expressed in more
detail as: “num-constraints-that-would-be-satisfied(move) 7 0”.

The GSAT algorithm prefers “moves-on-total-constraint-
violations”. Preference assigns to each move in the contention
list a numeric value, which in the case of GSAT, is the
difference between the number of constraints that will become
satisfied by a particular move and the number of constraints
that will become unsatisfied. The expression for this function
is “NumWillSatisfy(move) - NumWillUnsatisfy(move)”. It is
shown as an expression tree in Figure 4.

Move

NumWill
Unsatisfy

Move

NumWillSatisfy

Minus

Fig. 4. The GSAT preference heuristic as an expression tree

2Readers may at this stage wish to refer to the tables of functions and
terminals for the three component heuristics, which are presented in Tables IV-
VI at the end of this paper.

The selection heuristics have not yet been modelled in
sufficient detail that they could be adapted through cross-over
or mutation. However, four different selection heuristics are
listed in Table V. Selection heuristics can still be represented
as expression trees, only the set of functions and terminals has
currently been limited, such that only a fixed set of heuristics
is possible.

VII. LEARNING NEW HEURISTICS

The previous section has described how heuristics may
be represented as expression trees that can then be adapted
with genetic programming. Although the set of functions and
terminals is fixed for all heuristics, the presence of a mixture
of functions (such as “AND”, “OR” and “NOT” for contention
and “PLUS”, “MINUS” and “TIMES” for preference) permit
a range of new heuristics to be learned, as well as existing
heuristics to be combined in novel ways. No limit is placed
on the complexity (size) of the algorithms that may be learned,
which will vary depending on the fitness offered by such levels
of complexity. The ability of this representation to learn new
algorithms and without an a priori complexity bound address
the two remaining limitations identified from the literature.

It is believed that a further level of “granularity” may be
exploited, where appropriate functions and terminals are not
specified, but are instead learned from a much more finely
grained meta-knowledge of a constraint system. This is beyond
the scope of the current paper, but will form the basis of our
future work into evolving algorithms. The experimental study
presented in the next section will be limited to the function
and terminal sets tabulated in Tables IV, V & VI.

VIII. EXPERIMENTAL STUDY AND RESULTS

An initial experimental study has been conducted to test the
ability of the new representation and genetic programming to
successfully evolve heuristic expression trees. This study is
the precursor to a more detailed and extensive study to be pre-
sented in future work. Performing multiple runs of a constraint
algorithm is a time-consuming task, and adapting algorithms
with a method such as genetic programming is even more so,
as the performance of an entire population of algorithms must
be evaluated. The challenges facing an evolutionary algorithm
with a computationally intensive fitness function cannot be
overstated. It is not the authors’ intention to demonstrate that
this method can immediately generate algorithms competitive
with state-of-the-art constraint satisfaction algorithms. The
object of this exploratory study is to demonstrate that from
a random starting population, an evolutionary technique can
improve a population of algorithms’ performance over time,
within the framework of the presented representation.

Algorithm performance is most often presented in the con-
straint literature in terms of the number of moves required to
find a solution or in terms of the time taken to locate a solution.
Results are averaged over a number of attempts, as many
heuristic algorithms employ an element of randomness when
navigating the search space as well as randomly initialising
their solution vector. This randomness makes the algorithms



non-deterministic, and a single, possibly “lucky”, run is not
necessarily indicative of an algorithm’s performance. For this
reason, figures presented for the time or number of moves
required to locate a solution are averaged over a number of
trials.

Population Composition
Population Size 100
Copied from previous generation 25
Randomly selected and crossed-over 70
New elements generated 5
Elitism Yes
Evaluation of Algorithm Fitness
F= 8�9;:=<�>=:=?@>@A;BDCD>FEHGI<JBK:�9�LNMD<JBK9H?O:�AP<Q9�BDRTSVUXWKY@Y[Z\8J]Q^�^�COBDB`_a:�9;CDR
Test Problem uf20-01.cnf
Number of runs for each algorithm 25
Maximum moves per run 10000
Number of moves required by state-of-the-art 24 b
Number of generations 75

TABLE II
EXPERIMENT CONDITIONS

An initial random population of algorithms was generated
and the fitness of each member evaluated. One of the fitness
measures being used is the fewest constraint violations that
the algorithm was able to achieve during its search. This is
averaged over all runs of an algorithm and then standardised
(in the usual genetic programming sense) to the worst per-
forming element of the population. The second figure is the
number of times that the algorithm found a solution. scaled
between (1-100), which rapidly becomes the dominant part of
the fitness function, as the problemhas less that 100 constraints
that to be unsatisfied. This fitness functionis presented in
Table II. The constraint problemselected for this test is a
randomly generated satisfiability problem with 20 variables
and 91 constraints, available from the SATLIB benchmark set3.
The maximum number of moves (per run) that each algorithm
is given is well in excess of the number required by state-of-
the-art algorithms4.

The three heuristics that compose each algorithm are not
permitted to “inter-breed”. That is, contention heuristics may
only be crossed with other contention heuristics and so on.
Which of the three heuristics are crossed is determined ran-
domly, and more than one of the heuristics may be crossed in a
single cross-over operation. Although new selection heuristics
cannot be learned due to the limited set of functions and
terminals specified, cross-over can swap selection heuristics
between two algorithms, pairing each selection heuristic with
a different contention and preference combination.

Experimental results are shown in Table III, Figure 5
(average success of the population) and in Figure 7 (the best
performance of any individual algorithm). The use of elitism to
convey the best performing elements of one generation to the
next would generally limit the amount of noise present in the
results, and provide a monotonically increasing “best” fitness.

3http://www.satlib.org
4Determined using the SAPS weighting algorithm of [14]

In these results however, the evaluation of each algorithm
from generation to generation, is in itself a stochastic process.
Only a relatively small number of runs was performed which
is insufficient to remove all of the noise introduced by the
inherent randomness of the algorithms.

Generation Mean Mean Best Turns Total
Success Unsatisfied to Solution Diversity

Constraints (Percent)
Problem: uf20-01.cnf

0 11.4% 5.01 374 100%
9 66.3% 1.37 166 61.2%

19 84.4% 0.97 136 67.3%
29 85.9% 0.41 103 71.4%
39 84.5% 0.55 76 59.2%
49 87.2% 0.54 60 59.2%
59 90.9% 0.46 60 44.9%
69 94.2% 0.22 54 46.9%
74 89.1% 0.35 61 55.1%

TABLE III
RESULTS OF ALGORITHM EVOLUTION

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generation

A
ve

ra
ge

 s
uc

ce
ss

 ra
te

 o
f t

he
 p

op
ul

at
io

n

Success rate improvement over time

Fig. 5. Success rate improvement over time

Despite occasional decreases in the best fitness of the
population, a steady improvement in performance can be
observed up until convergence occurred at around generation
50. At this point, the population had converged to a very
small subset of the available functions and terminals. A total
of 49 functions and terminals were presented in Tables IV-
VI. The best performing algorithms used only combinations
of the “InRandom”, “WontUnsatisfy” and “Or” contention
functions, with either “NumWillSatisfy” or “SumConstrain-
tAges” as a preference function and either “RandomFrom-
Maxmimum” or “RandomFromPositive” used for selection.
Only the contention functions tended to grow significantly,
with sizable trees (more than 50 nodes each) composed solely
of the three contention functions mentioned. However, the
nature of the “OR” function means that any further expansion
beyond “InRandom OR WontUnsatisfy” does not alter the



operation of the heuristic. The cumulative genetic diversity
of the population is shown for both the initial and final
generations in Figure 6. As can be seen from this figure, most
of the best performing individuals in the final population were
drawn from a very small subset of the available functions and
terminals.

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Population ranked by fitness

C
um

ul
at

iv
e 

ge
ne

tic
 d

iv
er

si
ty

 a
s 

pe
rc

en
t o

f p
os

si
bl

e 
to

ta
l

Initial and Final Generation Cumulative Genetic Diversity

Generation 0
Generation 74

Fig. 6. Cumulative population diversity for initial and final generation

The performance of the best individual algorithm improved
by a factor of 6 between generation 0 and generation 74. Dur-
ing the same period, the average success rate of the population
had risen from 11% to over 90%. Best performance is the more
important measure, however as this reflects an undeniable im-
provement in the system, whereas average performace can be
increased simply by removing poorly performing individuals
and does not necessarily reflect an improvement in individual
algorithms. The lowest number of moves required to locate a
solution is plotted against generation in Figure 7. From this
diagram it is clear that even from a relatively poor performing
initial start, the proposed algorithm representation used with
genetic programming allows significantly improved algorithms
to be evolved.

IX. CONCLUSIONS AND FUTURE WORK

This paper has introduced a new representation for con-
straint satisfaction algorithms that can model both complete
and local search methods. It has further shown how the
application of genetic programming to the new representation
can evolve effective constraint solving algorithms, while at
the time time addressing some of the limitations of existing
methods (such as learning new algorithms and exploiting
synergies).

Future work will concentrate on a much larger experimental
study; the inclusion of compound heuristics in the genome; and
a determination of the most appropriate method of handling
multiple instances of a single heuristic. Even with a fixed
set of functions and terminals, albeit one large enough to
be combined in many novel ways, a random initial and

0 10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

400

Generation

M
in

im
um

 tu
rn

s 
re

qu
ire

d 
to

 lo
ca

te
 s

ol
ut

io
n

Improvement in turns required to locate solution

Fig. 7. Minimum turns required to locate a solution

poor-performing population of algorithms was significantly
improved by the application of genetic programming operating
within the presented representation.

X. ACKNOWLEDGMENT

The authors would like to acknowledge the support of
the Australian Research Council Large Grant A00000118 in
conducting this research.

REFERENCES

[1] David H. Wolpert and William G. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–
82, April 1997.

[2] Steven Minton. An analytic learning system for specializing heuristics.
In IJCAI ’93: Proceedings of the 13th International Joint Conference
on Artificial Intelligence, pages 922–929, Chambéry, France, 1993.

[3] Steven Minton. Automatically configuring constraint satisfaction pro-
grams: A case study. Constraints, 1(1):7–43, 1996.

[4] J. E. Borrett, Edward P. K. Tsang, and N. R. Walsh. Adaptive constraint
satisfaction: The quickest first principle. In European Conference on
Artificial Intelligence, pages 160–164, 1996.

[5] Limin Han and Graham Kendall. An investigation of a Tabu assisted
hyper-heuristic genetic algorithm. In 2003 Congress on Evolutionary
Computation, volume 3, pages 2230–2237. IEEE Press, 2003.

[6] Jonathan Gratch and Steve Chien. Adaptive problem-solving for large-
scale scheduling problems: A case study. Journal of Artificial Intelli-
gence Research, 1:365–396, May 1996.

[7] Alexander Nareyek. Choosing search heuristics by non-stationary
reinforcement learning. In M.G.C. Resende and J.P. de Sousa (Eds),
Metaheuristics: Computer Decision Making, pages 523–544. Kluwer
Academic Publishers, 2001.

[8] Susan L. Epstein, Eugene C. Freuder, Richard Wallace, Anton Morozov,
and Bruce Samuels. The adaptive constraint engine. In Pascal Van
Hentenryck, editor, CP ’02: Principles and Practice of Constraint
Programming, pages 525–540, 2002.

[9] Bart Selman, Hector J. Levesque, and D. Mitchell. A new method
for solving hard satisfiability problems. In Paul Rosenbloom and Peter
Szolovits, editors, AAAI’92, pages 440–446, Menlo Park, California,
1992. AAAI Press.

[10] Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for
improving local search. In AAAI’94, pages 337–343, Seattle, 1994.

[11] Byungki Cha and Kazuo Iwama. Adding new clauses for faster local
search. In AAAI’97, Vol. 1, pages 332–337, 1997.



[12] David McAllester, Bart Selman, and Henry Kautz. Evidence for
invariants in local search. In AAAI’97, pages 321–326, Providence,
Rhode Island, 1997.

[13] John Koza. Genetic Programming: On the programming of computers
by means of natural selection. MIT Press, Cambridge, Massachusetts,
1992.

[14] F. Hutter, D. Tompkins, and H. Hoos. Scaling and probabilistic smooth-
ing: Efficient dynamic local search for SAT. In CP ’02: Principles and
Practice of Constraint Programming, pages 233–248. Springer Verlag,
2002.

Functions for use in Contention Heuristics
InUnsatisfied Move c Bool
True iff Move is in an unsatisfied constraint
WontUnsatisfy Move c Bool
True iff Move won’t unsatisfy any constraints
MoveNotTaken Move c Bool
True iff Move hasn’t been previously taken
InRandom Move c Bool
True iff Move is in a persistent random constraint.
The constraint is persistent this turn only.
AgeOverInt Move c Integer c Bool
True iff this Move hasn’t been taken for Integer turns.
RandomlyTrue Integer c Bool
Randomly True Integer percent of the time
And, Or Bool c Bool c Bool
The boolean AND and OR functions. Definition as expected
Not Bool c Bool
The boolean NOT function. True iff its input is False.

Terminals for use in Contention Heuristics
Move Move
The move currently being considered for contention.
NumVariables Integer
The number of variables in the current problem.
True, False Bool
The boolean values True and False.
10, 25, 50, 75 Integer
A selection of integer values.

TABLE IV
FUNCTION AND TERMINAL SETS FOR CONTENTION

Functions for use in Selection Heuristics
RandomFromMaximum ListOfMoves c ListOfCosts c Move
A random selection from the maximum cost moves.
RandomFromMinimum ListOfMoves c ListOfCosts c Move
A random selection from the minimum cost moves.
RandomFromPositive ListOfMoves c ListOfCosts c Move
A random selection from positive cost moves.
RandomFromAll ListOfMoves c ListOfCosts c Move
A random selection from all moves

Terminals for use in Selection Heuristics
ListOfMoves ListOfMoves
The list of moves determined by the Contention stage.
ListOfCosts ListOfMoves
The accompanyng list of costs determined by the Preference phase.

TABLE V
FUNCTION AND TERMINAL SETS FOR SELECTION

Functions for use in Preference Heuristics
AgeOfMove Move c Integer
Returns the number of turns since Move last taken.
NumWillSatisfy Move c Integer
Returns the number of constraints that will be satisfied by Move.
NumWillUnsatisfy Move c Integer
Returns the number of constraints that will be unsatisfied by Move.
Degree Move c Integer
Since each Move concerns a single variable, Degree returns the
number of constraints this Move (variable) participates in.
PosDegree Move c Integer
As for Degree, but returns the total number of constraints
that are satisfied by a setting of True for this variable.
NegDegree Move c Integer
Opposite of PosDegree.
DepandantDegree Move c Integer
Returns the total number of constraints that this variable participates
in that are additionally satisfied by its current value.
OppositeDegree Move c Integer
As for DependantDegree but for constraints not satisfied by the
variable’s current value.
TimesTaken Move c Integer
Returns the number of times Move has been taken.
SumTimesUnsatisfied Move c Integer
Returns the sum of the the number of times all constraints Move
affects, have been unsatisfied.
SumTimesSatisfied Move c Integer
As above, but for the number of times Satisfied.
SumConstraintAges Move c Integer
For all constraints Move participates in, returns the sum of the lengths
of time each constraint has been unsatisfied
NumNewSatisfied Move c Integer
Returns the number of constraints not currently satisfied that
will be satisfied by Move.
NumNeverSatisfied Move c Integer
Returns the number of constraints that have never been satisfied that
Move will satisfy.
RandomValue Integer c Integer
Returns a random value between 0 and its input-1.
Plus Integer c Integer c Integer
Returns the sum of its two input arguments.
Minus Integer c Integer c Integer
Returns the subtraction of its two input arguments.
Times Integer c Integer c Integer
Returns the product of its two input arguments.
LeftShift Integer c Integer
Returns its input shifted 16 bits higher.

Terminals for use in Contention Heuristics
Move Integer c Integer
The move currently being considered for preference.
NumVariables, NumConstraints Integer c Integer
The number of variables and constraints in the current problem.
NumFlips Integer c Integer
The number turns that have already passed.
0, 1 Integer c Integer
The integers 0 and 1.

TABLE VI
FUNCTION AND TERMINAL SETS FOR PREFERENCE


