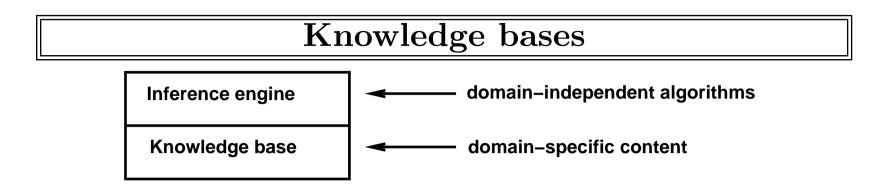
PRINCIPLES OF INTELLIGENT SYSTEMS: LOGICAL AGENTS*

Lecture 9

^{*}These slides are taken from the Chapter 7 slides of Russell and Norvig's Artificial Intelligence: A modern approach (http://aima.eecs.berkeley.edu/slides-pdf/)

Outline

- \diamond Knowledge-based agents
- \diamond Wumpus world
- \diamondsuit Logic in general—models and entailment
- \diamond Propositional (Boolean) logic
- \diamondsuit Equivalence, validity, satisfiability
- \diamondsuit Inference rules and theorem proving
 - forward chaining
 - backward chaining



Knowledge base = set of sentences in a formal language

Declarative approach to building an agent (or other system): TELL it what it needs to know

Then it can ${\rm Ask}$ itself what to do—answers should follow from the KB

Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented

Or at the implementation level

i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

```
function KB-AGENT( percept) returns an action
static: KB, a knowledge base
t, a counter, initially 0, indicating time
TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE( action, t))
t \leftarrow t + 1
return action
```

The agent must be able to:

Represent states, actions, etc. Incorporate new percepts Update internal representations of the world Deduce hidden properties of the world Deduce appropriate actions

Wumpus World PEAS description

Performance measure

gold +1000, death -1000

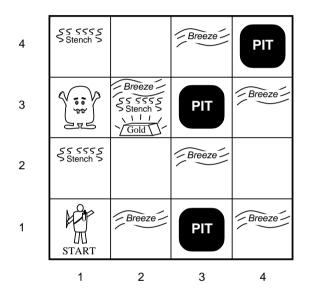
-1 per step, -10 for using the arrow

Environment

Squares adjacent to wumpus are smelly Squares adjacent to pit are breezy Glitter iff gold is in the same square Shooting kills wumpus if you are facing it Shooting uses up the only arrow Grabbing picks up gold if in same square Releasing drops the gold in same square

Sensors Breeze, Glitter, Smell

Actuators Left turn, Right turn, Forward, Grab, Release, Shoot



Observable??

Observable?? No-only local perception

Deterministic??

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic??

Observable?? No-only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static??

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete??

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

Discrete?? Yes

Single-agent??

Observable?? No—only local perception

Deterministic?? Yes—outcomes exactly specified

Episodic?? No—sequential at the level of actions

Static?? Yes—Wumpus and Pits do not move

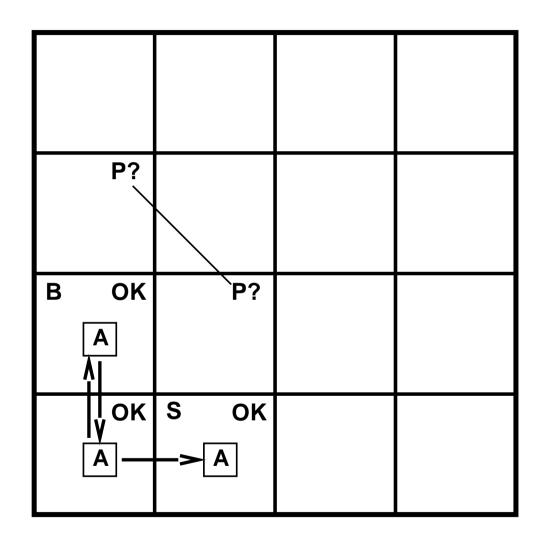
Discrete?? Yes

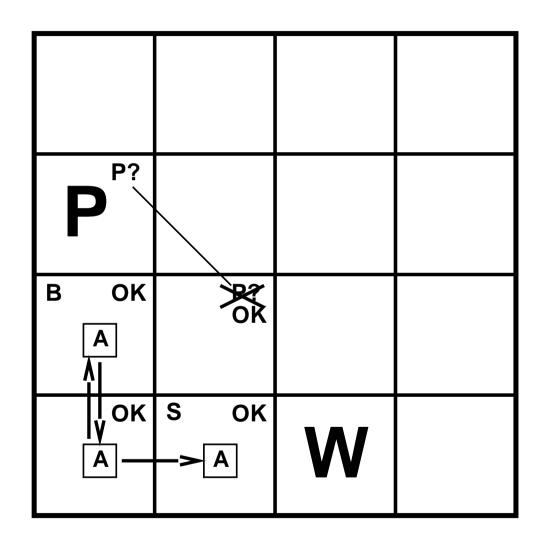
Single-agent?? Yes—Wumpus is essentially a natural feature

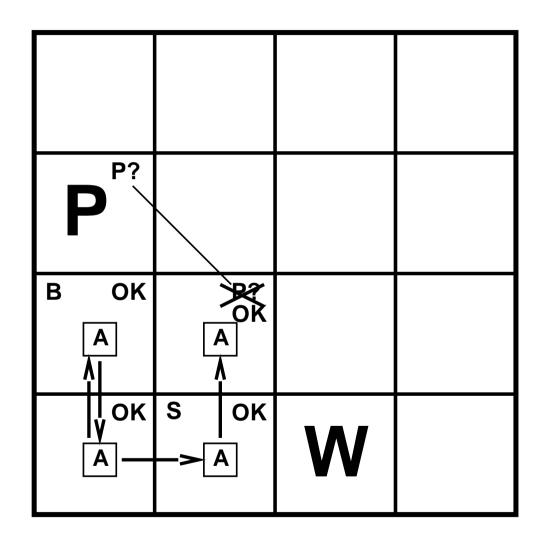
ОК		
OK A	OK	

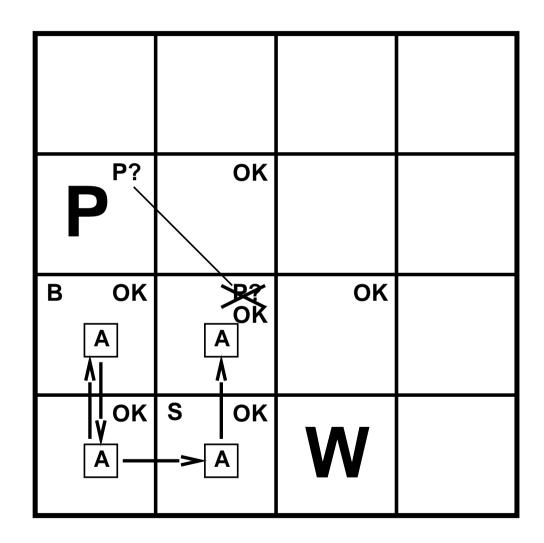
B OK A A		
ОК А	OK	

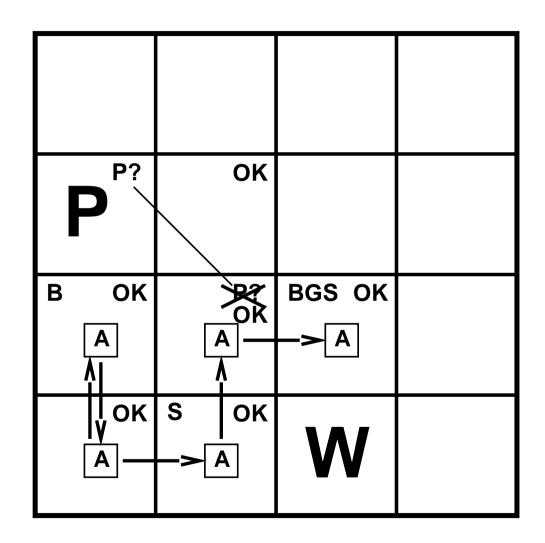
	P?		
B [OK A	`P?	
[OK A	OK	



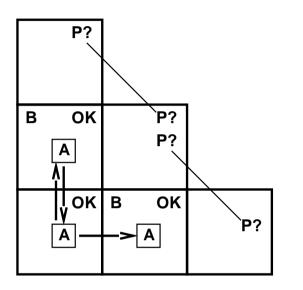






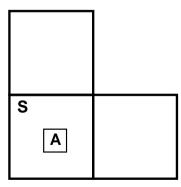


Other tight spots



Breeze in (1,2) and (2,1) \Rightarrow no safe actions

Assuming pits uniformly distributed, (2,2) has pit w/ prob 0.86, vs. 0.31



Smell in (1,1) \Rightarrow cannot move Can use a strategy of coercion: shoot straight ahead wumpus was there \Rightarrow dead \Rightarrow safe wumpus wasn't there \Rightarrow safe

Logic in general

Logics are formal languages for representing information such that conclusions can be drawn

Syntax defines the sentences in the language

Semantics define the "meaning" of sentences; i.e., define truth of a sentence in a world

E.g., the language of arithmetic

 $x+2 \ge y$ is a sentence; x2+y > is not a sentence

 $x+2 \ge y$ is true iff the number x+2 is no less than the number y

 $x+2 \ge y$ is true in a world where x=7, y=1 $x+2 \ge y$ is false in a world where x=0, y=6

Entailment

Entailment means that one thing *follows from* another:

 $KB \models \alpha$

Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true

E.g., x + y = 4 entails 4 = x + y

Entailment is a relationship between sentences (i.e., *syntax*) that is based on *semantics*

Models

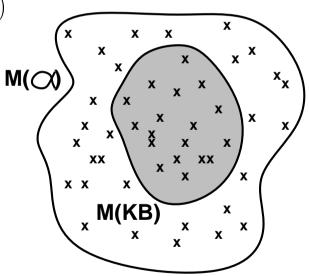
Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated

We say m is a model of a sentence α if α is true in m

 $M(\alpha)$ is the set of all models of α

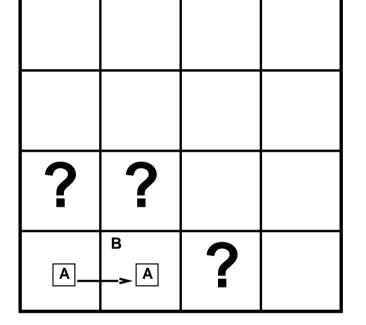
Then $KB \models \alpha$ if and only if $M(KB) \subseteq M(\alpha)$

E.g. KB = Giants won and Reds won $\alpha = \text{Giants won}$



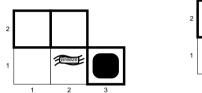
Entailment in the wumpus world

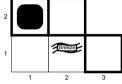
Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

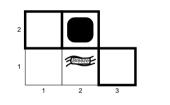


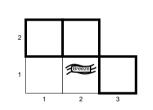
Consider possible models for ?s assuming only pits

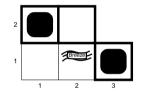
3 Boolean choices \Rightarrow 8 possible models

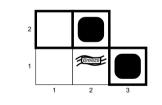


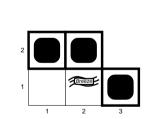


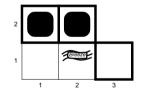


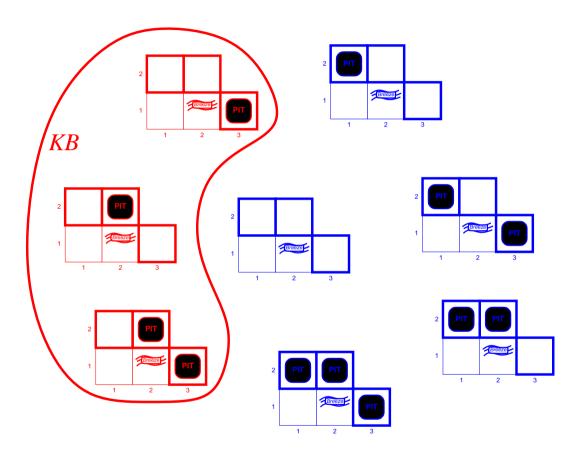




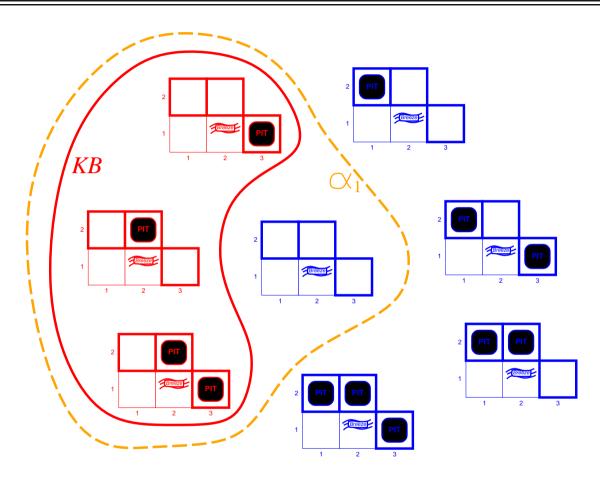






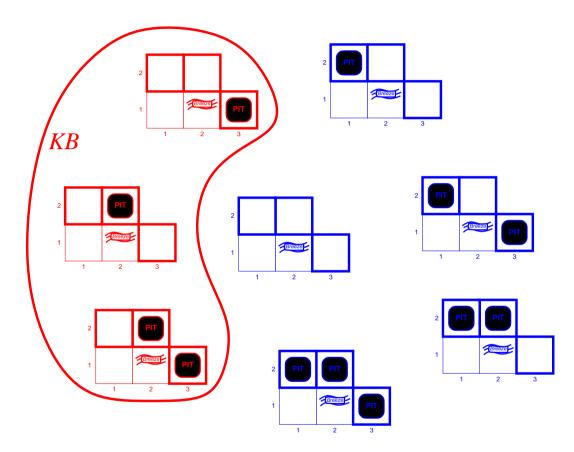


KB = wumpus-world rules + observations

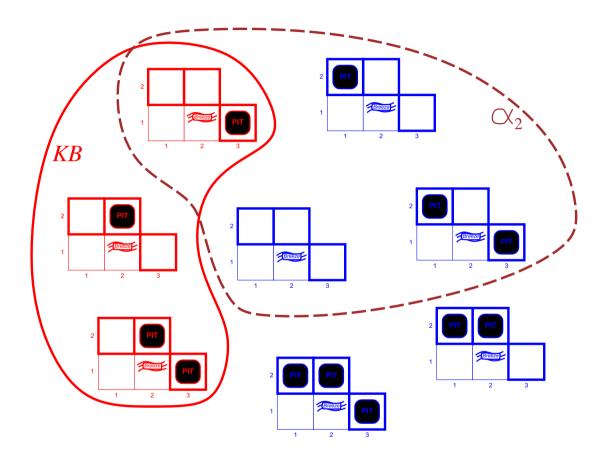


KB = wumpus-world rules + observations

 $\alpha_1 =$ "[1,2] is safe", $KB \models \alpha_1$, proved by model checking



KB = wumpus-world rules + observations



KB = wumpus-world rules + observations

$$\alpha_2 =$$
 "[2,2] is safe", $KB \not\models \alpha_2$

Inference

```
KB \vdash_i \alpha = sentence \alpha can be derived from KB by procedure i
```

```
Consequences of KB are a haystack; \alpha is a needle.
Entailment = needle in haystack; inference = finding it
```

```
Soundness: i is sound if whenever KB \vdash_i \alpha, it is also true that KB \models \alpha
```

```
Completeness: i is complete if
whenever KB \models \alpha, it is also true that KB \vdash_i \alpha
```

Propositional logic: Syntax

Propositional logic is the simplest logic—illustrates basic ideas

The proposition symbols P_1 , P_2 etc are sentences

If S is a sentence, $\neg S$ is a sentence (negation)

If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)

If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction)

If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)

If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

E.g. $P_{1,2}$ $P_{2,2}$ $P_{3,1}$ true true false

(With these symbols, 8 possible models, can be enumerated automatically.)

Rules for evaluating truth with respect to a model m:

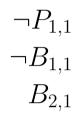
Simple recursive process evaluates an arbitrary sentence, e.g., $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (false \lor true) = true \land true = true$

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j].



"Pits cause breezes in adjacent squares"

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j].

$$\neg P_{1,1} \\ \neg B_{1,1} \\ B_{2,1}$$

"Pits cause breezes in adjacent squares"

 $\begin{array}{lll} B_{1,1} & \Leftrightarrow & (P_{1,2} \lor P_{2,1}) \\ B_{2,1} & \Leftrightarrow & (P_{1,1} \lor P_{2,2} \lor P_{3,1}) \end{array}$

"A square is breezy *if and only if* there is an adjacent pit"

Note: we have to make explicit sentences for each square, i.e. we cannot define general rules that apply to all squares. For this we need a more expressive logic.

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	E	E	÷	÷	E	÷	÷	:
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	true	true
false	true	false	false	false	true	false	\underline{true}	true
false	true	false	false	false	true	true	<u>true</u>	true
false	true	false	false	true	false	false	false	true
:	:	:	÷	÷	:	:	:	
true	false	false						

Inference by enumeration

Depth-first enumeration of all models is sound and complete

```
function TT-ENTAILS? (KB, \alpha) returns true or false
```

```
symbols \leftarrow a list of the proposition symbols in KB and \alpha
return TT-CHECK-ALL(KB, \alpha, symbols, [])
```

```
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false

if EMPTY?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(\alpha, model)

else return true

else do

P \leftarrow \text{FIRST}(symbols); rest \leftarrow \text{REST}(symbols)

return TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, true, model) and

TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, false, model)
```

 $O(2^n)$ for n symbols; problem is co-NP-complete

Logical equivalence

Two sentences are logically equivalent iff true in same models: $\alpha \equiv \beta$ if and only if $\alpha \models \beta$ and $\beta \models \alpha$ $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

Validity and satisfiability

A sentence is valid if it is true in *all* models, e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$ Validity is connected to inference via the Deduction Theorem: $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid A sentence is satisfiable if it is true in some model e.g., $A \lor B$, CA sentence is unsatisfiable if it is true in no models e.g., $A \land \neg A$

Satisfiability is connected to inference via the following: $KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable i.e., prove α by *reductio ad absurdum*

Proof methods

Proof methods divide into (roughly) two kinds:

Application of inference rules

- Legitimate (sound) generation of new sentences from old
- Proof = a sequence of inference rule applications
 - Can use inference rules as operators in a standard search alg.
- Typically require translation of sentences into a normal form

Model checking

truth table enumeration (always exponential in n)
improved backtracking, e.g., Davis–Putnam–Logemann–Loveland
heuristic search in model space (sound but incomplete)
e.g., min-conflicts-like hill-climbing algorithms

Forward and backward chaining

Horn Form (restricted) KB = conjunction of Horn clauses Horn clause = \diamondsuit proposition symbol; or \diamondsuit (conjunction of symbols) \Rightarrow symbol E.g., $C \land (B \Rightarrow A) \land (C \land D \Rightarrow B)$

Modus Ponens (for Horn Form): complete for Horn KBs

$$\frac{\alpha_1,\ldots,\alpha_n,\qquad \alpha_1\wedge\cdots\wedge\alpha_n \Rightarrow \beta}{\beta}$$

Can be used with forward chaining or backward chaining. These algorithms are very natural and run in *linear* time

Forward chaining

Idea: fire any rule whose premises are satisfied in the KB, add its conclusion to the KB, until query is found

$$P \Rightarrow Q$$

$$L \land M \Rightarrow P$$

$$B \land L \Rightarrow M$$

$$A \land P \Rightarrow L$$

$$A$$

$$B$$

$$Q$$

$$P$$

$$P$$

$$M$$

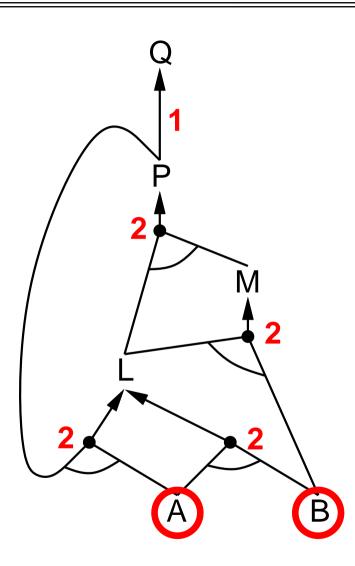
$$A \land B \Rightarrow L$$

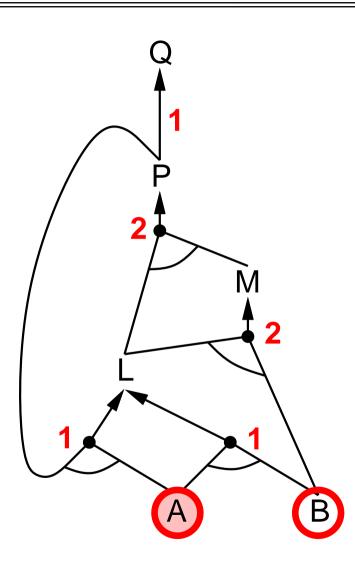
$$A$$

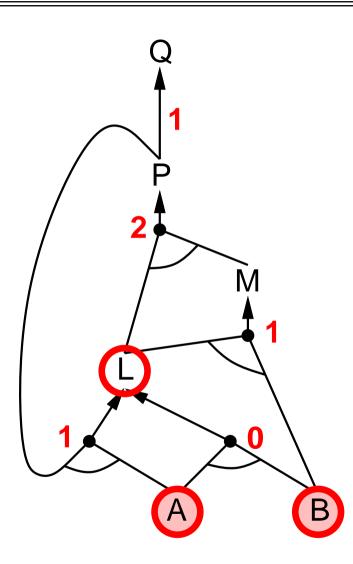
B

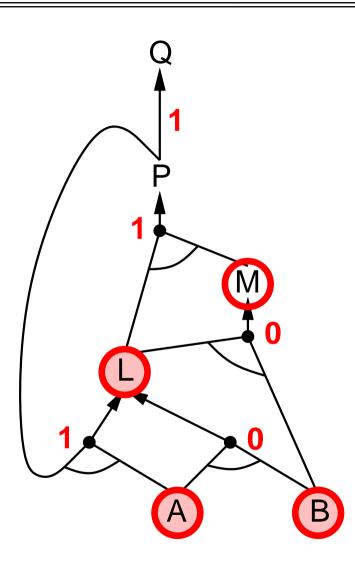
Forward chaining algorithm

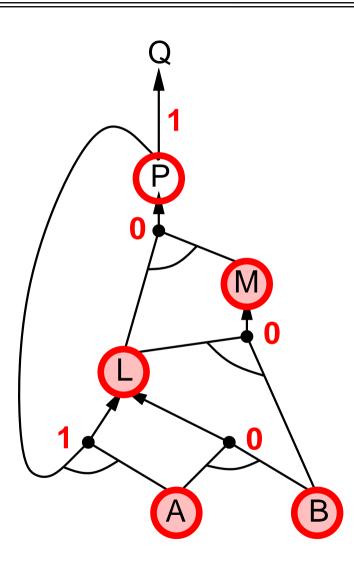
```
function PL-FC-ENTAILS?(KB, q) returns true or false
  local variables: count, a table, indexed by clause, initially the number of premises
                      inferred, a table, indexed by symbol, each entry initially false
                     agenda, a list of symbols, initially the symbols known to be true
   while agenda is not empty do
       p \leftarrow \text{POP}(agenda)
       unless inferred[p] do
            inferred[p] \leftarrow true
            for each Horn clause c in whose premise p appears do
                 decrement count[c]
                 if count[c] = 0 then do
                     if HEAD[c] = q then return true
                     PUSH(HEAD[c], agenda)
   return false
```

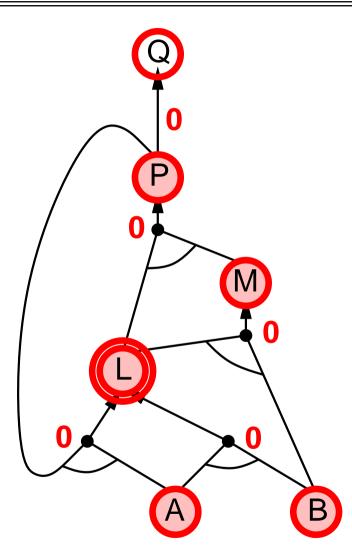


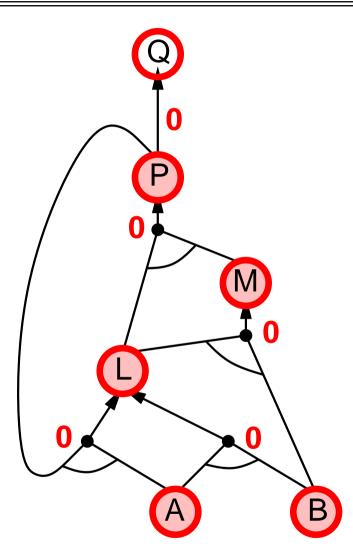


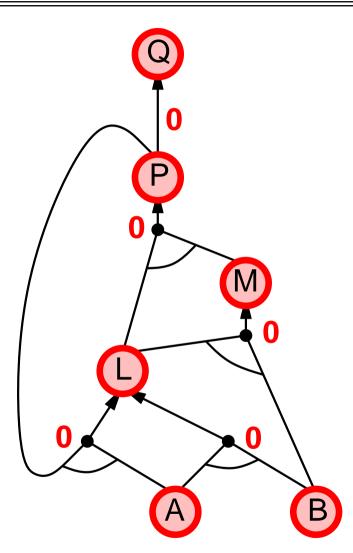












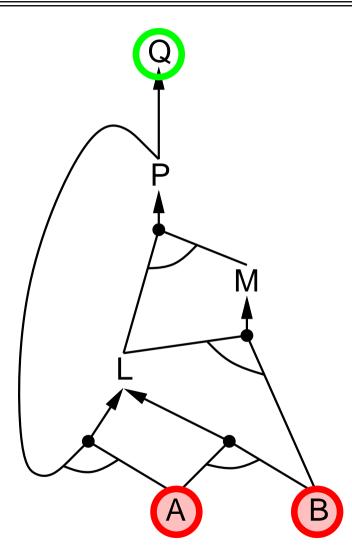
Backward chaining

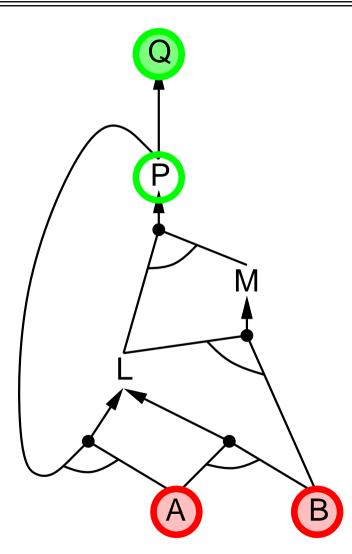
Idea: work backwards from the query q: to prove q by BC, check if q is known already, or prove by BC all premises of some rule concluding q

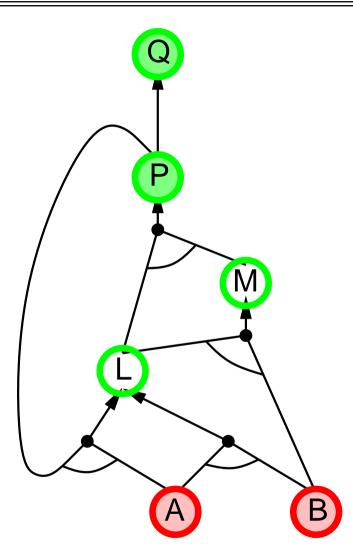
Avoid loops: check if new subgoal is already on the goal stack

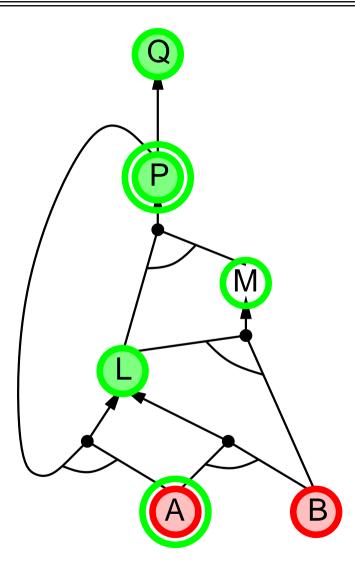
Avoid repeated work: check if new subgoal

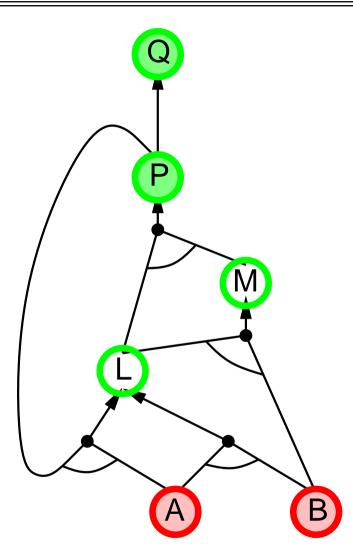
- 1) has already been proved true, or
- 2) has already failed

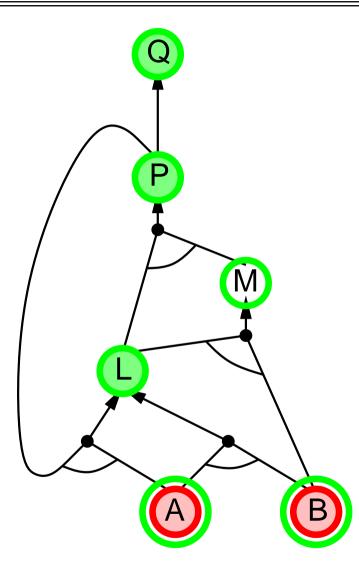


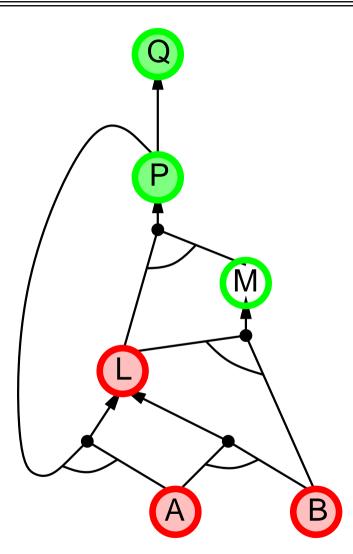


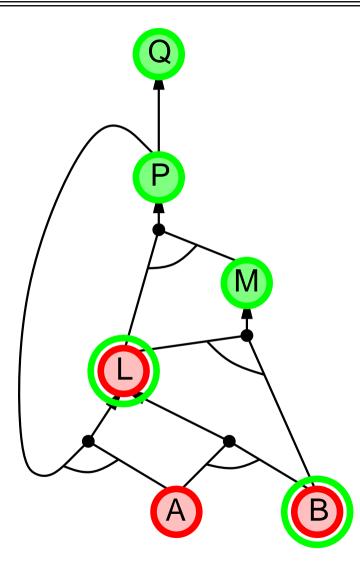


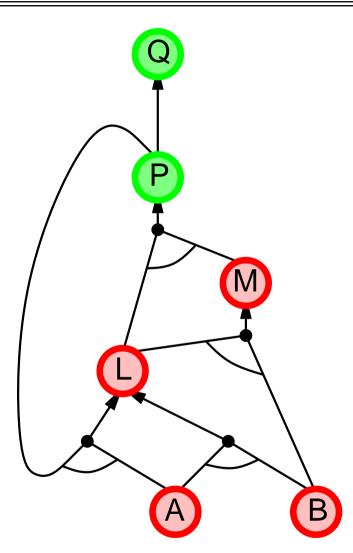


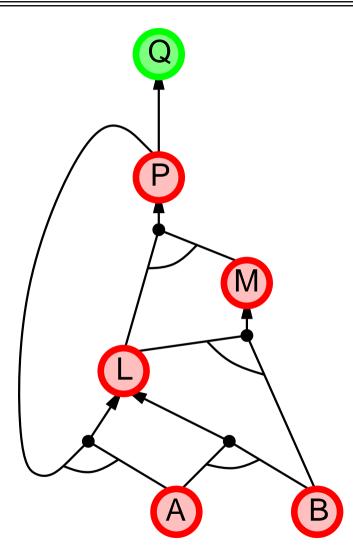


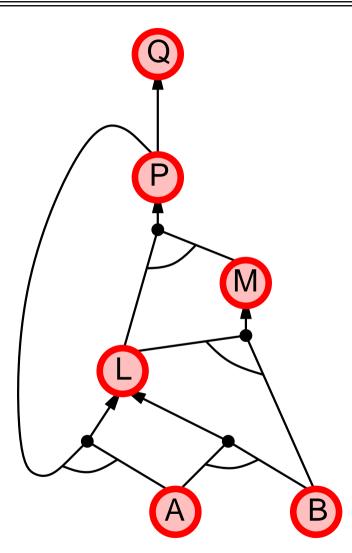












Forward vs. backward chaining

FC is data-driven, cf. automatic, unconscious processing, e.g., object recognition, routine decisions

May do lots of work that is irrelevant to the goal

BC is goal-driven, appropriate for problem-solving, e.g., Where are my keys? How do I get into a PhD program?

Complexity of BC can be *much less* than linear in size of KB

Summary

Logical agents apply inference to a knowledge base to derive new information and make decisions

Basic concepts of logic:

- syntax: formal structure of sentences
- semantics: truth of sentences wrt models
- entailment: necessary truth of one sentence given another
- inference: deriving sentences from other sentences
- soundess: derivations produce only entailed sentences
- completeness: derivations can produce all entailed sentences

Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.

Forward, backward chaining are linear-time, complete for Horn clauses

But: propositional logic lacks expressive power