
Principles of Intelligent Systems:
Planning with STRIPS∗

Lecture 12

∗These slides are based on the Chapter 11 slides of Russell and Norvig’s Artificial Intelligence: A modern approach (http://aima.eecs.berkeley.edu/slides-pdf/)
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Outline

♦ Search vs. planning

♦ STRIPS operators

♦ Partial-order planning
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Search vs. planning

Consider the task get milk, bananas, and a cordless drill
Standard search algorithms seem to fail miserably:

. . .

Buy Tuna Fish

Buy Arugula

Buy Milk

Go To Class

Buy a Dog

Talk to Parrot

Sit Some More

Read A Book

...

Go To Supermarket

Go To Sleep

Read A Book

Go To School

Go To Pet Store

Etc. Etc. ...

Sit in Chair

Start

Finish

After-the-fact heuristic/goal test inadequate
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Search vs. planning contd.

Planning systems do the following:
1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

Search Planning
States Java data structures Logical sentences
Actions Java code Preconditions/outcomes
Goal Java code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions
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STRIPS operators

Tidily arranged actions descriptions, restricted language

Action: Buy(x)

Have(x)

At(p)  Sells(p,x)

Buy(x)

Precondition: At(p), Sells(p, x)
Effect: Have(x)

[Note: this abstracts away many important details!]

Restricted language ⇒ efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals

Also requires the specification of an initial state and a goal state

A complete set of STRIPS operators can be translated
into a set of successor-state axioms, i.e. into Situation Calculus
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Expressiveness of STRIPS

STRIPS (STanford Research Institute Problem Solver) provides a “cut-down”
first-order logic representation for planning:

Preconditions and effects must be function-free
Closed world assumption: Unmentioned literals are false
Effect P ∧ ¬Q : add P and delete Q
Only positive literals in states e.g.: Poor ∧ Unknown
Only ground literals in goals e.g.: Rich ∧ Famous
Goals and effects are conjunctions e.g.: Rich ∧ Famous
No support for equality e.g. x = y is not allowed

Note, the closed-world assumption avoids the frame problem

As an example, consider the following air transport problem involving loading
and unloading cargo onto and off planes and flying it from place to place:
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Example STRIPS problem

Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK)
∧Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2)
∧Airport(JFK) ∧ Airport(SFO))

Goal(At(C1, JFK) ∧ At(C2, SFO))
Action(Load(c, p, a),

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: ¬At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: At(c, a) ∧ ¬In(c, p))

Action(Fly(p, from, to),
PRECOND: At(p, from)∧Plane(p)∧Airport(from)∧Airport(to)
EFFECT: ¬At(p, from) ∧ At(p, to))
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Planning as state-space search

Forward state-space search: As each action has an effect, planning can be
solved using state-space search algorithms

This requires the following components:

An initial state: given in the STRIPS definition
Actions applicable for any given state that specify the successor state:

given by the STRIPS action effects
A goal test: given in the STRIPS definition
A step cost: each action is given a cost of one

Similarly, as each action has a precondition, we can search backwards from
the goal using backward state-space search

In either case we can use heuristics to estimate the cost of reaching the goal
and apply algorithms like A∗
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Partially ordered plans

However, we can also attempt to find a plan by solving several sub-problems
simultaneously and combining them - this can have the advantage of reducing
the size of the search space and providing a more flexible answer:

Partially ordered collection of steps with
Start step has the initial state description as its effect
Finish step has the goal description as its precondition
causal links from outcome of one step to precondition of another
temporal ordering between pairs of steps

Open condition = precondition of a step not yet causally linked

A plan is complete iff every precondition is achieved

A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it
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Example

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)
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Example

Buy(Drill)

Buy(Milk)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM)

Sells(HWS,Drill)At(HWS)

At(x)

Sells(SM,Milk)Sells(HWS,Drill)At(Home) Sells(SM,Ban.)
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Example

At(SM)

At(Home)

At(HWS)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(Home) Have(Ban.) Have(Drill)Have(Milk)

Sells(SM,Milk)At(SM) Sells(SM,Ban.)At(SM)

Sells(HWS,Drill)At(HWS)
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Planning process

Operators on partial plans:
add a link from an existing action to an open condition
add a step to fulfill an open condition
order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans

Backtrack if an open condition is unachievable or
if a conflict is unresolvable
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POP algorithm sketch

function POP(initial, goal, operators) returns plan

plan←Make-Minimal-Plan(initial, goal)

loop do

if Solution?( plan) then return plan

Sneed, c←Select-Subgoal( plan)

Choose-Operator( plan, operators,Sneed, c)

Resolve-Threats( plan)

end

function Select-Subgoal( plan) returns Sneed, c

pick a plan step Sneed from Steps( plan)

with a precondition c that has not been achieved

return Sneed, c
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POP algorithm contd.

procedure Choose-Operator(plan, operators,Sneed, c)

choose a step Sadd from operators or Steps( plan) that has c as an effect

if there is no such step then fail

add the causal link Sadd
c−→ Sneed to Links( plan)

add the ordering constraint Sadd ≺ Sneed to Orderings( plan)

if Sadd is a newly added step from operators then

add Sadd to Steps( plan)

add Start ≺ Sadd ≺ Finish to Orderings( plan)

procedure Resolve-Threats(plan)

for each Sthreat that threatens a link Si
c−→ Sj in Links( plan) do

choose either

Demotion: Add Sthreat≺ Si to Orderings( plan)

Promotion: Add Sj ≺ Sthreat to Orderings( plan)

if not Consistent( plan) then fail

end
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Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition
achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

Finish

At(Home)

At(Home)

Go(Home)

DEMOTION

PROMOTION

Go(Supermarket)

At(Supermarket)

Buy(Milk)

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)
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Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:
– choice of Sadd to achieve Sneed

– choice of demotion or promotion for clobberer
– selection of Sneed is irrevocable

POP is sound, complete, and systematic (no repetition)

Extensions for disjunction, universals, negation, conditionals

Can be made efficient with good heuristics derived from problem description

Particularly good for problems with many loosely related subgoals
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Example: Blocks world

Start State Goal State

B A

C

A

B

C

PutOn(x,y)

Clear(x) On(x,z) Clear(y)

~On(x,z) ~Clear(y) 
   Clear(z) On(x,y)

PutOnTable(x)

Clear(x) On(x,z)

~On(x,z) Clear(z) On(x,Table)

+ several inequality constraints

"Sussman anomaly" problem
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Example contd.

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)
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Example contd.

B A

C

A

B

CFINISH

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

On(A,B) On(B,C)
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Example contd.

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)
PutOn(A,B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

On(A,z) Cl(B)Cl(A)
On(B,z) Cl(C)Cl(B)
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Example contd.

B A

C

A

B

CFINISH

On(A,B)     On(B,C)

START

On(C,A) On(A,Table) Cl(B) On(B,Table) Cl(C)

PutOn(B,C)

Cl(B) On(B,z) Cl(C)

PutOn(A,B)

Cl(A) On(A,z) Cl(B)

PutOn(A,B)
clobbers Cl(B)
=> order after
   PutOn(B,C)

PutOnTable(C) PutOn(B,C)
clobbers Cl(C)
=> order after
PutOnTable(C)

Cl(C)On(C,z)
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