Principles of Intelligent Systems: Planning with STRIPS*

Lecture 12
*These slides are based on the Chapter 11 slides of Russell and Norvig's Artificial Intelligence: A modern approach (http://aima.eecs.berkeley.edu/slides-pdf/)
\diamond Search vs. planning
\diamond STRIPS operators
\diamond Partial-order planning

Search vs. planning

Consider the task get milk, bananas, and a cordless drill Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate

Search vs. planning contd.

Planning systems do the following:

1) open up action and goal representation to allow selection
2) divide-and-conquer by subgoaling
3) relax requirement for sequential construction of solutions

	Search	Planning
States	Java data structures	Logical sentences
Actions	Java code	Preconditions/outcomes
Goal	Java code	Logical sentence (conjunction)
Plan	Sequence from S_{0}	Constraints on actions

STRIPS operators

Tidily arranged actions descriptions, restricted language
Action: Buy (x)
Precondition: $\operatorname{At}(p), \operatorname{Sells}(p, x)$
Effect: Have (x)
[Note: this abstracts away many important details!]
At(p) Sells (p, x)

$\operatorname{Buy}(\mathbf{x})$
Have (x)

Restricted language \Rightarrow efficient algorithm
Precondition: conjunction of positive literals
Effect: conjunction of literals
Also requires the specification of an initial state and a goal state
A complete set of STRIPS operators can be translated into a set of successor-state axioms, i.e. into Situation Calculus

Expressiveness of STRIPS

STRIPS (STanford Research Institute Problem Solver) provides a "cut-down" first-order logic representation for planning:

Preconditions and effects must be function-free
Closed world assumption: Unmentioned literals are false Effect $P \wedge \neg Q$: add P and delete Q
Only positive literals in states e.g.: Poor $\wedge U n k n o w n$
Only ground literals in goals e.g.: Rich \wedge Famous
Goals and effects are conjunctions e.g.: Rich \wedge Famous
No support for equality e.g. $x=y$ is not allowed
Note, the closed-world assumption avoids the frame problem
As an example, consider the following air transport problem involving loading and unloading cargo onto and off planes and flying it from place to place:

Example STRIPS problem


```
    Cargo (C)
    Airport(JFK)^Airport(SFO))
Goal(At(C C ,JFK)^At(C2,SFO))
Action(Load(c,p,a),
    PRECOND: At (c,a) ^At (p,a) ^Cargo (c) ^Plane (p)^Airport (a)
    EFFECT:}\negAt(c,a)\wedgeIn(c,p)
Action(Unload(c,p,a),
    PRECOND: In (c,p)^At (p,a)^Cargo (c)^Plane (p)^ Airport (a)
    EFFECT: At (c,a)^\negIn(c,p))
Action(Fly(p, from,to),
    PRECOND:At(p, from) }\wedge\mathrm{ Plane (p) ^Airport(from) }\wedge\mathrm{ Airport (to)
    EFFECT: }\negAt(p,\mathrm{ from ) ^At (p,to))
```


Planning as state-space search

Forward state-space search: As each action has an effect, planning can be solved using state-space search algorithms

This requires the following components:
An initial state: given in the STRIPS definition
Actions applicable for any given state that specify the successor state:
given by the STRIPS action effects
A goal test: given in the STRIPS definition
A step cost: each action is given a cost of one
Similarly, as each action has a precondition, we can search backwards from the goal using backward state-space search

In either case we can use heuristics to estimate the cost of reaching the goal and apply algorithms like A^{*}

Partially ordered plans

However, we can also attempt to find a plan by solving several sub-problems simultaneously and combining them - this can have the advantage of reducing the size of the search space and providing a more flexible answer:

Partially ordered collection of steps with
Start step has the initial state description as its effect Finish step has the goal description as its precondition causal links from outcome of one step to precondition of another temporal ordering between pairs of steps

Open condition $=$ precondition of a step not yet causally linked
A plan is complete iff every precondition is achieved
A precondition is achieved iff it is the effect of an earlier step and no possibly intervening step undoes it

Example

Start

At(Home) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Ban.)

Have(Milk) At(Home) Have(Ban.) Have(Drill)
Finish

Example

Planning process

Operators on partial plans:
add a link from an existing action to an open condition add a step to fulfill an open condition order one step wrt another to remove possible conflicts

Gradually move from incomplete/vague plans to complete, correct plans
Backtrack if an open condition is unachievable or
if a conflict is unresolvable

```
function POP(initial, goal, operators) returns plan
    plan}\leftarrow\mathrm{ MAKE-MINIMAL-PLAN(initial, goal)
    loop do
        if Solution?(plan) then return plan
        Sneed,}c\leftarrow\mathrm{ Select-Subgoal( plan)
        Choose-Operator(plan,operators, }\mp@subsup{S}{\mathrm{ need }}{},c
        Resolve-Threats(plan)
    end
```

function SELECT-SUBGOAL(plan) returns $S_{\text {need }}, c$
pick a plan step $S_{\text {need }}$ from $\operatorname{STEPS}($ plan $)$
with a precondition c that has not been achieved
return $S_{\text {need }}, c$

POP algorithm contd.

procedure Choose-Operator (plan, operators, $S_{\text {need }}, c$)

choose a step $S_{\text {add }}$ from operators or $\operatorname{STEPS}($ plan $)$ that has c as an effect if there is no such step then fail
add the causal link $S_{\text {add }} \xrightarrow{c} S_{\text {need }}$ to Links (plan)
add the ordering constraint $S_{\text {add }} \prec S_{\text {need }}$ to Orderings (plan)
if $S_{\text {add }}$ is a newly added step from operators then
add $S_{\text {add }}$ to $\operatorname{STEPS}($ plan $)$
add Start $\prec S_{\text {add }} \prec$ Finish to Orderings (plan)
procedure Resolve-Threats(plan)
for each $S_{\text {threat }}$ that threatens a link $S_{i} \xrightarrow{c} S_{j}$ in Links(plan) do choose either

Demotion: Add $S_{\text {threat }} \prec S_{i}$ to Orderings (plan)
Promotion: Add $S_{j} \prec S_{\text {threat }}$ to Orderings (plan)
if not Consistent (plan) then fail
end

Clobbering and promotion/demotion

A clobberer is a potentially intervening step that destroys the condition achieved by a causal link. E.g., Go(Home) clobbers At(Supermarket):

Demotion: put before Go(Supermarket)

Promotion: put after Buy(Milk)

Properties of POP

Nondeterministic algorithm: backtracks at choice points on failure:

- choice of $S_{\text {add }}$ to achieve $S_{\text {need }}$
- choice of demotion or promotion for clobberer
- selection of $S_{\text {need }}$ is irrevocable

POP is sound, complete, and systematic (no repetition)
Extensions for disjunction, universals, negation, conditionals
Can be made efficient with good heuristics derived from problem description
Particularly good for problems with many loosely related subgoals

Example: Blocks world

Clear(x) On(x,z) Clear(y)

Clear (z) On (x, y)

+ several inequality constraints

Example contd.

	C
B	A

FINISH

Example contd.

Example contd.

PutOn(A,B) clobbers $\mathrm{Cl}(\mathrm{B})$ => order after PutOn(B,C)

Example contd.

PutOn(A,B) clobbers $\mathrm{Cl}(\mathrm{B})$ => order after PutOn(B,C)

PutOn(B,C) clobbers $\mathrm{Cl}(\mathrm{C})$ => order after PutOnTable(C)

