
Principles of Intelligent Systems:

Improving Backtracking Search∗

Lecture 7

∗These slides are taken from the Chapter 4b slides of Russell and Norvig’s Artificial Intelligence: A modern approach (http://aima.eecs.berkeley.edu/slides-pdf/)

Lecture 7 1



Outline

♦ Variable and value ordering

♦ Forward-checking

♦ Arc-consistency

♦ Problem structure and problem decomposition

Lecture 7 2



Review: Backtracking search

function Backtracking-Search(csp) returns solution/failure

return Recursive-Backtracking([ ], csp)

function Recursive-Backtracking(assigned, csp) returns solution/failure

if assigned is complete then return assigned

var←Select-Unassigned-Variable(Variables[csp],assigned, csp)

for each value in Order-Domain-Values(var,assigned, csp) do

if value is consistent with assigned according to Constraints[csp] then

result←Recursive-Backtracking([var = value|assigned ], csp)

if result 6= failure then return result

end

return failure

Lecture 7 3



Improving backtracking efficiency

General-purpose methods can give huge gains in speed:

1. Which variable should be assigned next?

2. In what order should its values be tried?

3. Can we detect inevitable failure early?

4. Can we take advantage of problem structure?

Lecture 7 4



Most constrained variable

Most constrained variable:
choose the variable with the fewest legal values

Lecture 7 5



Most constraining variable

Tie-breaker among most constrained variables

Most constraining variable:
choose the variable with the most constraints on remaining variables

Lecture 7 6



Least constraining value

Given a variable, choose the least constraining value:
the one that rules out the fewest values in the remaining variables

Allows 1 value for SA

Allows 0 values for SA

Combining these heuristics makes 1000 queens feasible

Lecture 7 7



Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Lecture 7 8



Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Lecture 7 9



Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Lecture 7 10



Forward checking

Idea: Keep track of remaining legal values for unassigned variables
Terminate search when any variable has no legal values

WA NT Q NSW V SA T

Lecture 7 11



Constraint propagation

Forward checking propagates information from assigned to unassigned vari-
ables, but doesn’t provide early detection for all failures:

WA NT Q NSW V SA T

NT and SA cannot both be blue!

Constraint propagation repeatedly enforces constraints locally

Lecture 7 12



Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

Lecture 7 13



Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

Lecture 7 14



Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Lecture 7 15



Arc consistency

Simplest form of propagation makes each arc consistent

X → Y is consistent iff
for every value x of X there is some allowed y

WA NT Q NSW V SA T

If X loses a value, neighbors of X need to be rechecked

Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment

Lecture 7 16



Arc consistency algorithm

function AC-3( csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables {X1, X2, . . . , Xn}

local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(Xi, Xj)←Remove-First(queue)

if Remove-Inconsistent-Values(Xi, Xj) then

for each Xk in Neighbors[Xi] do

add (Xk, Xi) to queue

function Remove-Inconsistent-Values(Xi, Xj) returns true iff we remove

a value

removed← false

for each x in Domain[Xi] do

if no value y in Domain[Xj] allows (x,y) to satisfy the constraint between Xi

and Xj

then delete x from Domain[Xi]; removed← true

return removed

Lecture 7 17



O(n2d3), can be reduced to O(n2d2)
but cannot detect all failures in poly time!

Lecture 7 18



Problem structure

Victoria

WA

NT

SA

Q

NSW

V

T

Tasmania and mainland are independent subproblems

Identifiable as connected components of constraint graph

Lecture 7 19



Problem structure contd.

Suppose each subproblem has c variables out of n total

Worst-case solution cost is n/c · dc, linear in n

E.g., n = 80, d = 2, c = 20
280 = 4 billion years at 10 million nodes/sec
4 · 220 = 0.4 seconds at 10 million nodes/sec

Lecture 7 20



Tree-structured CSPs

A

B

C

D

E

F

Theorem: if the constraint graph has no loops, the CSP can be solved in
O(n d2) time

Compare to general CSPs, where worst-case time is O(dn)

This property also applies to logical and probabilistic reasoning:
an important example of the relation between syntactic restrictions
and the complexity of reasoning.

Lecture 7 21



Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves
such that every node’s parent precedes it in the ordering

A

B

C

D

E

F

A B C D E F

2. For j from n down to 2, applyRemoveInconsistent(Parent(Xj), Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

Lecture 7 22



Nearly tree-structured CSPs

Conditioning: instantiate a variable, prune its neighbors’ domains

Victoria

WA

NT
Q

NSW

V

TT

Victoria

WA

NT

SA

Q

NSW

V

Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree

Cutset size c ⇒ runtime O(dc · (n − c)d2), very fast for small c

Lecture 7 23



Summary

Variable ordering and value selection heuristics help backtracking significantly

Forward checking prevents assignments that guarantee later failure

Constraint propagation (e.g., arc consistency) does additional work
to constrain values and detect inconsistencies

The CSP representation allows analysis of problem structure

Tree-structured CSPs can be solved in linear time

Lecture 7 24


