
Principles of Intelligent Systems:
Constraint Satisfaction Problems∗

Lecture 6

∗These slides are taken from the Chapter 4b slides of Russell and Norvig’s Artificial Intelligence: A modern approach (http://aima.eecs.berkeley.edu/slides-pdf/)

Lecture 6 1

Outline

♦ Definitions

♦ CSP examples

♦ Backtracking search for CSPs

Lecture 6 2

Constraint satisfaction problems (CSPs)

Standard search problem:
state is a “black box”—any old data structure

that supports goal test, eval, successor

CSP:
state is defined by variables Xi with values from domain Di

goal test is a set of constraints specifying
allowable combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more power
than standard search algorithms

Lecture 6 3

Example: Map-Coloring

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania
Variables WA, NT , Q, NSW , V , SA, T
Domains Di = {red, green, blue}
Constraints: adjacent regions must have different colors

e.g., WA 6= NT (if the language allows this), or
(WA,NT) ∈ {(red, green), (red, blue), (green, red), (green, blue), . . .}

Lecture 6 4

Example: Map-Coloring contd.

Western
Australia

Northern
Territory

South
Australia

Queensland

New South Wales

Victoria

Tasmania

Solutions are assignments satisfying all constraints, e.g.,
{WA = red, NT = green,Q = red,NSW = green, V = red, SA = blue, T = green}

Lecture 6 5

Constraint graph

Binary CSP: each constraint relates at most two variables

Constraint graph: nodes are variables, arcs show constraints

Victoria

WA

NT

SA

Q

NSW

V

T

General-purpose CSP algorithms use the graph structure
to speed up search. E.g., Tasmania is an independent subproblem!

Lecture 6 6

Varieties of CSPs

Discrete variables
finite domains; size d ⇒ O(dn) complete assignments
♦ e.g., Boolean CSPs, incl. Boolean satisfiability (NP-complete)

infinite domains (integers, strings, etc.)
♦ e.g., job scheduling, variables are start/end days for each job
♦ need a constraint language, e.g., StartJob1 + 5 ≤ StartJob3

♦ linear constraints solvable, nonlinear undecidable

Continuous variables
♦ e.g., start/end times for Hubble Telescope observations
♦ linear constraints solvable in poly time by LP methods

Lecture 6 7

Varieties of constraints

Unary constraints involve a single variable,
e.g., SA 6= green

Binary constraints involve pairs of variables,
e.g., SA 6= WA

Higher-order constraints involve 3 or more variables,
e.g., cryptarithmetic column constraints

Preferences (soft constraints), e.g., red is better than green
often representable by a cost for each variable assignment
→ constrained optimization problems

Lecture 6 8

Example: Cryptarithmetic

OWTF U R

+
OWT
OWT

F O U R

X2 X1X3

Variables: F T U W R O X1 X2 X3

Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Constraints

alldiff(F, T, U,W,R,O)
O + O = R + 10 ·X1, etc.

Lecture 6 9

Real-world CSPs

Assignment problems
e.g., who teaches what class

Timetabling problems
e.g., which class is offered when and where?

Hardware configuration

Spreadsheets

Transportation scheduling

Factory scheduling

Floorplanning

Notice that many real-world problems involve real-valued variables

Lecture 6 10

Standard search formulation (incremental)

Let’s start with the straightforward, dumb approach, then fix it

States are defined by the values assigned so far

♦ Initial state: the empty assignment, { }
♦ Successor function: assign a value to an unassigned variable

that does not conflict with current assignment.
⇒ fail if no legal assignments (not fixable!)

♦ Goal test: the current assignment is complete

1) This is the same for all CSPs!
2) Every solution appears at depth n with n variables

⇒ use depth-first search
3) Path is irrelevant, so can also use complete-state formulation
4) b = (n− `)d at depth `, hence n!dn leaves!!!!

Lecture 6 11

Backtracking search

Variable assignments are commutative, i.e.,
[WA = red then NT = green] same as [NT = green then WA = red]

Only need to consider assignments to a single variable at each node
⇒ b = d and there are dn leaves

Depth-first search for CSPs with single-variable assignments
is called backtracking search

Backtracking search is the basic uninformed algorithm for CSPs

Can solve n-queens for n ≈ 25

Lecture 6 12

Backtracking search

function Backtracking-Search(csp) returns solution/failure

return Recursive-Backtracking([], csp)

function Recursive-Backtracking(assigned, csp) returns solution/failure

if assigned is complete then return assigned

var←Select-Unassigned-Variable(Variables[csp],assigned, csp)

for each value in Order-Domain-Values(var,assigned, csp) do

if value is consistent with assigned according to Constraints[csp] then

result←Recursive-Backtracking([var = value|assigned], csp)

if result 6= failure then return result

end

return failure

Lecture 6 13

Backtracking example

Lecture 6 14

Backtracking example

Lecture 6 15

Backtracking example

Lecture 6 16

Backtracking example

Lecture 6 17

Summary

CSPs are a special kind of problem:
states defined by values of a fixed set of variables
goal test defined by constraints on variable values

Backtracking = depth-first search with one variable assigned per node

Lecture 6 18

