PRINCIPLES OF INTELLIGENT SYSTEMS: UNINFORMED SEARCH STRATEGIES*

Lecture 4

^{*}These slides are taken from the Chapter 3 slides of Russell and Norvig's Artificial Intelligence: A modern approach (http://aima.eecs.berkeley.edu/slides-pdf/)

Outline

Uninformed strategies use only the information available in the problem definition

- \diamond Breadth-first search
- \diamondsuit Uniform-cost search
- \diamond Depth-first search
- \diamond Depth-limited search
- \diamond Iterative deepening search

Review: Tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure fringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe) loop do if fringe is empty then return failure $node \leftarrow$ REMOVE-FRONT(fringe) if GOAL-TEST[problem] applied to STATE(node) succeeds return node fringe \leftarrow INSERTALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of node expansion

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end (B) (E) (F) (G)

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end B C D (E) (F) (G)

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end A B C E F G

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end B C C F G

Complete??

Complete?? Yes (if *b* is finite)

Time??

Complete?? Yes (if *b* is finite)

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space??

Complete?? Yes (if *b* is finite)

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal??

Complete?? Yes (if *b* is finite)

<u>Time</u>?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

<u>Space</u>?? $O(b^{d+1})$ (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 10MB/sec so 24hrs = 860GB.

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

fringe = queue ordered by path cost

Equivalent to breadth-first if step costs all equal

```
Complete?? Yes, if step cost \geq \epsilon
```

<u>Time</u>?? # of nodes with $g \leq \text{ cost of optimal solution}$, $O(b^{\lceil C^*/\epsilon \rceil})$ where C^* is the cost of the optimal solution

Space?? # of nodes with $g \leq \text{ cost of optimal solution, } O(b^{\lceil C^*/\epsilon \rceil})$

Optimal?? Yes—nodes expanded in increasing order of g(n)

Expand deepest unexpanded node

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

Complete??

<u>Complete</u>?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

Time??

<u>Complete</u>?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

<u>Time</u>?? $O(b^m)$: terrible if m is much larger than dbut if solutions are dense, may be much faster than breadth-first

Space??

<u>Complete</u>?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

<u>Time</u>?? $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

<u>Space</u>?? O(bm), i.e., linear space!

Optimal??

<u>Complete</u>?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path ⇒ complete in finite spaces

<u>Time</u>?? $O(b^m)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

<u>Space</u>?? O(bm), i.e., linear space!

Optimal?? No

Depth-limited search

= depth-first search with depth limit l, i.e., nodes at depth l have no successors

Recursive implementation:

```
function DEPTH-LIMITED-SEARCH( problem, limit) returns soln/fail/cutoff

RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff

cutoff-occurred? \leftarrow false

if GOAL-TEST[problem](STATE[node]) then return node

else if DEPTH[node] = limit then return cutoff

else for each successor in EXPAND(node, problem) do

result \leftarrow RECURSIVE-DLS(successor, problem, limit)

if result = cutoff then cutoff-occurred? \leftarrow true

else if result \neq failure then return result

if cutoff-occurred? then return cutoff else return failure
```

Iterative deepening search

```
function ITERATIVE-DEEPENING-SEARCH( problem) returns a solution
inputs: problem, a problem
for depth ← 0 to ∞ do
    result ← DEPTH-LIMITED-SEARCH( problem, depth)
    if result ≠ cutoff then return result
end
```

Iterative deepening search l = 0

Complete??

Complete?? Yes

Time??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$$

Space??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$$

Space?? O(bd)

Optimal??

Complete?? Yes

Time??
$$(d+1)b^0 + db^1 + (d-1)b^2 + \ldots + b^d = O(b^d)$$

Space?? O(bd)

Optimal?? Yes, if step cost = 1Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right:

 $N(\mathsf{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$ $N(\mathsf{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100$

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	$egin{array}{c} Yes^* \ b^{d+1} \end{array}$	$Yes^*\\ h^{\lceil C^*/\epsilon\rceil}$	No b^m	Yes, if $l \ge d$	Yes
Time Space	b^{a+1} b^{d+1}	$b^{\lceil C^*/\epsilon \rceil}$	$b^{\prime\prime\prime}$ bm	b° bl	$egin{array}{c} b^d \ bd \end{array}$
Optimal?	Yes*	Yes*	No	No	Yes

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search

```
function GRAPH-SEARCH( problem, fringe) returns a solution, or failure

closed \leftarrow an empty set

fringe \leftarrow INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if fringe is empty then return failure

node \leftarrow REMOVE-FRONT(fringe)

if GOAL-TEST[problem](STATE[node]) then return node

if STATE[node] is not in closed then

add STATE[node] to closed

fringe \leftarrow INSERTALL(EXPAND(node, problem), fringe)

end
```

Summary

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms