Principles of Intelligent Systems: Uninformed Search Strategies*

Lecture 4

[^0]
Outline

Uninformed strategies use only the information available in the problem definition
\diamond Breadth-first search
\diamond Uniform-cost search
\diamond Depth-first search
\diamond Depth-limited search
\diamond Iterative deepening search
\square

Review: Tree search

function Tree-SEARCh (problem, fringe) returns a solution, or failure
fringe $\leftarrow \operatorname{Insert}($ Make-Node(Initial-State[problem]), fringe)
loop do
if fringe is empty then return failure
node \leftarrow Remove-Front(fringe)
if Goal-Test [problem] applied to State(node) succeeds return node
fringe $\leftarrow \operatorname{InsERTALL}(E x P A N D($ node, problem), fringe)

A strategy is defined by picking the order of node expansion

Breadth-first search

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Breadth-first search

Expand shallowest unexpanded node
Implementation:
fringe is a FIFO queue, i.e., new successors go at end

Properties of breadth-first search
Complete??

Properties of breadth-first search
Complete?? Yes (if b is finite)
Time??

Properties of breadth-first search
Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d Space??

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal??

Properties of breadth-first search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Space is the big problem; can easily generate nodes at $10 \mathrm{MB} / \mathrm{sec}$ so $24 \mathrm{hrs}=860 \mathrm{~GB}$.

Uniform-cost search

Expand least-cost unexpanded node
Implementation:
fringe $=$ queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost $\geq \epsilon$
Time?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right\rceil}\right)$ where C^{*} is the cost of the optimal solution

Space?? \# of nodes with $g \leq$ cost of optimal solution, $O\left(b^{\left[C^{*} / \epsilon\right\rceil}\right)$
Optimal?? Yes—nodes expanded in increasing order of $g(n)$

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search
Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Depth-first search

Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

\square
Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front
\square
Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front
\square
Expand deepest unexpanded node
Implementation:
fringe $=$ LIFO queue, i.e., put successors at front

Properties of depth-first search
Complete??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? $O(b m)$, i.e., linear space!
Optimal??

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
\Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first

Space?? $O(b m)$, i.e., linear space!
Optimal?? No

Depth-limited search

$=$ depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

```
function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
    Recursive-DLS(Make-Node(Initial-State[problem]), problem,limit)
function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
    cutoff-occurred? \leftarrow false
    if Goal-Test[problem](State[node]) then return node
    else if Depth[node] = limit then return cutoff
    else for each successor in Expand(node, problem) do
        result }\leftarrow\mathrm{ Recursive-DLS(successor, problem, limit)
        if result = cutoff then cutoff-occurred? }\leftarrow\mathrm{ true
        else if result }\not=\mathrm{ failure then return result
    if cutoff-occurred? then return cutoff else return failure
```


Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH (problem) returns a solution inputs: problem, a problem
for depth $\leftarrow 0$ to ∞ do
result \leftarrow DEPTH-Limited-SEARCH $($ problem, depth $)$
if result \neq cutoff then return result
end

Iterative deepening search $l=0$
it $=0$ (1)

Iterative deepening search $l=3$

Properties of iterative deepening search
Complete??

Properties of iterative deepening search
Complete?? Yes
Time??

Properties of iterative deepening search
Complete?? Yes
Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space??

Properties of iterative deepening search

Complete?? Yes
Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? $O(b d)$
Optimal??

Properties of iterative deepening search

Complete?? Yes
Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? $O(b d)$
Optimal?? Yes, if step cost $=1$
Can be modified to explore uniform-cost tree
Numerical comparison for $b=10$ and $d=5$, solution at far right:

$$
\begin{aligned}
N(\mathrm{IDS}) & =50+400+3,000+20,000+100,000=123,450 \\
N(\mathrm{BFS}) & =10+100+1,000+10,000+100,000+999,990=1,111,100
\end{aligned}
$$

Summary of algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes* *	Yes*	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\left\lceil C^{*} / \epsilon\right\rceil}$	b^{m}	b^{l}	b^{d}
Space	b^{d+1}	$b^{\left\lceil C^{*} / \epsilon\right\rceil}$	$b m$	$b l$	$b d$
Optimal?	Yes* *	Yes*	No	No	Yes

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!

Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure
closed \leftarrow an empty set
fringe $\leftarrow \operatorname{INSERT}($ MAKE-NODE $($ Initial-State[problem] $)$, fringe)
loop do
if fringe is empty then return failure
node \leftarrow REmove-Front(fringe)
if Goal-Test[problem](State%5Bnode%5D) then return node
if State[node] is not in closed then
add State[node] to closed
fringe $\leftarrow \operatorname{InsERT} A l L(E x P A N D($ node, problem), fringe)
end
\square
Variety of uninformed search strategies
Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

[^0]: *These slides are taken from the Chapter 3 slides of Russell and Norvig's Artificial Intelligence: A modern approach (http://aima.eecs.berkeley.edu/slides-pdf/)

