PRINCIPLES OF INTELLIGENT SYSTEMS:
PROBLEM SOLVING*

LECTURE 3

*These slides are taken from the Chapter 3 slides of Russell and Norvig’s Artificial Intelligence: A modern approach (http://aima.eecs.berkeley.edu/slides-pdf/)
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Problem-solving agents

Restricted form of general agent:

function SIMPLE-PROBLEM-SOLVING- AGENT( percept) returns an action
static: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state < UPDATE-STATE( state, percept)

if seq is empty then
goal+— FORMULATE-GOAL(state)
problem <— FORMULATE-PROBLEM( state, goal)
seq«— SEARCH( problem)

action<— RECOMMENDATION( seq, state)

seq<— REMAINDER(seq, state)

return action

Note: this is offline problem solving; solution executed “eyes closed.”
Online problem solving involves acting without complete knowledge.
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Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
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Example: Romania
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Problem types

Deterministic, fully observable = single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable = conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable = contingency problem
percepts provide new information about current state
solution is a tree or policy
often interleave search, execution

Unknown state space = exploration problem ( “online")
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Example: vacuum world

Single-state, start in #5. Solution??
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Example: vacuum world

Single-state, start in #5. Solution??

[Right, Suck] 1

Conformant, start in {1,2,3,4,5,6,7,8}
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Example: vacuum world

Single-state, start in #5. Solution??

[Right, Suck] 1

Conformant, start in {1,2,3,4,5,6,7,8}

[Right, Suck, Le ft, Suck]

Contingency, start in #5
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e.g., Right goes to {2,4,6,8}. Solution?? 3 f
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Murphy's Law: Suck can dirty a clean carpet .
Local sensing: dirt, location only.
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Example: vacuum world

Single-state, start in #5. Solution??

[Right, Suck] 1

Conformant, start in {1,2,3,4,5,6,7,8}

[Right, Suck, Le ft, Suck]

Contingency, start in #5

=)
2R
e.g., Right goes to {2,4,6,8}. Solution?? 3 f
=)
=)

Murphy's Law: Suck can dirty a clean carpet .
Local sensing: dirt, location only.

Solution??
[Right, if dirt then Suck]
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Single-state problem formulation

A problem is defined by four items:
initial state e.g., “at Arad”

successor function S(x) = set of action—state pairs

e.g., S(Arad) = {(Arad — Zerind, Zerind), ...}

goal test, can be
explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
c(x,a,y) is the step cost, assumed to be > 0

A solution is a sequence of actions
leading from the initial state to a goal state



Selecting a state space

Real world is absurdly complex
= state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., 'Arad — Zerind” represents a complex set
of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
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Example: vacuum world state space graph
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Example: vacuum world state space graph
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states?7: integer dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)
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Example: The 8-puzzle

7 2 4 1 2
5 6 4 5
8 3 1 7 8
Start State Goal State
states??
actions??
goal test??

path cost??
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Example: The 8-puzzle

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

states?7: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard|
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Example: robotic assembly

P
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states??: real-valued coordinates of

robot joint angles
parts of the object to be assembled

actions??: continuous motions of robot joints
goal test??: complete assembly with no robot included!

path cost??: time to execute
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Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function TREE-SEARCH( problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end
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Tree search example
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Tree search example
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Tree search example
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Implementation: states vs. nodes

A state is a (representation of)) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)

States do not have parents, children, depth, or path cost!
parent, action
A

State || 5 ||| 4 Node depth =6
g==6
6 [l 11l s
= ale
7 3l 2 st

The EXPAND function creates new nodes, filling in the various fields and
using the SUCCESSORFE'N of the problem to create the corresponding states.
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Implementation: general tree search

function TREE-SEARCH( problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem|), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GoAL-TEST[problem] applied to STATE(node) succeeds return node
fringe «— INSERTALL(EXPAND(node, problem), fringe)

function EXPAND( node, problem) returns a set of nodes

successors «— the empty set

for each action, result in SUCCESSOR-FN|[problem](STATE[node]) do
s<—a new NODE
PARENT-NODE[s| «— node; ACTION([s] < action; STATE[s] < result
PATH-COST[s| «+— PATH-C0OST[node] + STEP-COST(node, action, s)
DEPTH[s] +— DEPTH[node] + 1
add s to successors

return successors
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Search strategies

A strategy is defined by picking the order of node expansion

Strategies are evaluated along the following dimensions:
completeness—does it always find a solution if one exists?
time complexity—number of nodes generated /expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be 00)
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Summary

Problem formulation usually requires abstracting away real-world details to

define a state space that can feasibly be explored

Given a suitable state space, problem solving can be performed using a tree

search strategy
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